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Multiresolution motion analysis has gained considerable research interest as a

unified framework to facilitate a variety of motion editing tasks. Within this frame-

work, motion data are represented as a collection of coefficients that form a coarse-

to-fine hierarchy. The coefficients at the coarsest level describe the global pattern

of a motion signal, while those at fine levels provide details at successively finer

resolutions. Due to the inherent nonlinearity of the orientation space, the challenge

is to generalize multiresolution representations for motion data that contain orienta-

tions as well as positions. Our goal is to develop a multiresolution analysis method

that guarantees coordinate-invariance without singularity. To do so, we employ

two novel ideas: hierarchical displacement mapping and motion filtering. Hierar-

chical displacement mapping provides an elegant formulation to describe positions

and orientations in a coherent manner. Motion filtering enables us to separate mo-

tion details level-by-level to build a multiresolution representation in a coordinate-

invariant way. Our representation facilitates multiresolution motion editing through

level-wise coefficient manipulation that uniformly addresses issues raised by motion

modification, blending, and stitching.

Keywords: Multiresolution analysis, Coordinate-invariance, Hierarchical techniques,

Motion editing, Motion signal processing.
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Motion capture systems offer a convenient means of acquiring realistic motion data, that
is, capturing live motion. Due to the success of those systems, realistic, highly detailed
motion data are rapidly becoming popular in computer graphics. Archives of motion clips
are also commercially available. Such data sets are used widely in a variety of applications
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including animation film production, interactive character animation for television, and
video games.

Although high quality motion clips are relatively easy to obtain by virtue of motion cap-
ture techniques, crafting various animations of arbitrary length with available motion clips
remains difficult and requires such specialized tools as interactive editing, blending, stitch-
ing, smoothing, enhancement/attenuation, up/down-sampling, and compression. Bruderlin
and Williams [1] demonstrated that multiresolution analysis can be a unified framework
to implement those tools. The basic idea is to represent motion data (or signals) as a col-
lection of coefficients that form a coarse-to-fine hierarchy. The coefficients at the coarsest
level (or resolution) describe the global pattern of a motion signal, while those at fine levels
provide details at successively finer resolutions. With the representation, existing motion
data can be edited interactively by amplifying/attenuating particular frequency bands and
new motions can also be generated by the band-wise blending of existing motions.

Although well-established methods exist for multiresolution analysis in vector spaces,
the majority of these methods do not easily generalize in a uniform way for manipulating
motion data that contain orientations as well as positions. For example, the vector space
methods could be adapted to handle orientation data represented by Euler angles; however,
Euler angle parameterization has a singularity that incurs serious artifacts for most signal
processing techniques as well as for multiresolution analysis. To avoid such problems, a
nonsingular orientation representation, such as rotation matrices or unit quaternions, can be
employed. Due to the inherent nonlinearity of the orientation space, however, the challenge
is to generalize the results of multiresolution analysis in vector spaces for the orientation
space.

The major concern in developing a new multiresolution analysis method is to guar-
antee such important properties as coordinate-invariance. A multiresolution represen-
tation is coordinate-invariant if its coefficients are not influenced by the choice of the
coordinate system in which the original motion signal is represented. We can also de-
fine the coordinate-invariance for such motion editing operations as smoothing, blending,
and stitching, to yield consistent results independent of coordinate systems. Coordinate-
invariance is of significance not only in theoretical viewpoints but also in practical situa-
tions. Suppose, for example, that two identical motion clips are placed at different positions
in a reference frame and that we apply the same operation to modify those motions. In this
situation, a common expectation is that the identical results will occur independently of the
positions of the motion clips. A coordinate-invariant operation guarantees this expectation.

In this paper, we present a new approach to multiresolution motion analysis that is non-
singular and guarantees coordinate-invariance. To do so, we employ two ideas, hierarchical
displacement mapping and motion filtering, that provide an elegant formulation to handle
positions and orientations in a coherent manner without yielding singularity. Our multires-
olution representation consists of a coarse base signal and detail coefficients that form a
hierarchy of motion displacement maps. Displacement mapping was originally invented
for warping a canned motion while preserving its fine details [1, 27]. In our context, dis-
placement maps are used for adding details level-by-level to the base signal to reproduce
the original motion encoded in a multiresolution representation. Our construction algo-
rithm relies on a novel scheme for designing time-domain filters for motion data [16].
With those filters, we are able to construct a multiresolution representation by separating
motion details level-by-level in a coordinate-invariant way.
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The remainder of the paper is organized as follows. After reviewing the relevant previous
work, we describe a hierarchical structure for storing a motion signal and explain how to
construct it in Section 3. In Section 4, we provide a proof for the coordinate-invariance
of our multiresolution representation. In Section 5, experimental results are demonstrated.
Finally, we conclude the paper in Section 6.


� ������ ����

The notion of multiresolution analysis was initiated by Burt and Adelson [2] who intro-
duced a multiresolution image representation, the Gauss-Laplacian pyramid, to facilitate
such operations as seamless merging of image mosaics and temporal dissolving between
images. Their underlying idea was to decompose an image into a set of band-pass fil-
tered component images, each representing a different band of spatial frequency. This idea
was further elaborated by Mallat [18] to establish a multiresolution analysis for continuous
functions in connection with wavelet transformation.

Multiresolution techniques have been extensively exercised in computer graphics for
curve and surface editing, polygonal mesh editing, image editing and querying, texture
analysis and synthesis, video editing and viewing, image and surface compression, global
illumination, and variational modeling [23]. These techniques have been used in motion
editing and synthesis as well. Liu et al. [17] reported that adaptive refinement with hierar-
chical wavelets provides a significant speed-up for spacetime optimization. Bruderlin and
Williams [1] adopted a digital filter-bank technique to address multiresolution analysis of
discrete motion data. Their hierarchical representation of a motion with frequency bands
allows level-by-level editing of motion characteristics.

LTI (linear time-invariant) filters play a central role in digital filter-bank techniques.
Recently, there have been increasing efforts to generalize LTI filters for motion data that
contain orientations as well as positions. While a great deal of research results are available
for position data, the research for orientation data has recently been emerging. Lee and
Shin [14] formulated rotation smoothing as a nonlinear optimization problem and derived
smoothing operators from a series of fairness functionals defined on orientation data. Hsieh
et al. [9, 10] presented a similar formulation for which the strain energy is minimized. They
modified the traditional gradient-descent method to retain the unitariness of quaternions
during optimization. Fang et al. [5] applied a low-pass filter to the estimated angular
velocity of an input signal to reconstruct a smooth angular motion by integrating the filter
responses. More recently, Lee and Shin [16] presented a general scheme for designing
an orientation filter which is computationally efficient and guarantees such important filter
properties as coordinate-invariance, time-invariance, and symmetry.

One of the most important issues in motion editing is the development of tools that can
be used for manipulating highly detailed motion data. Witkin and Popović [27] introduced
motion warping (also called displacement mapping) as a means of editing motion data
while preserving its fine details. Unuma et al. [25] used Fourier analysis techniques to
interpolate and extrapolate motion data in the frequency domain. Rose et al. [20] suggested
a semiautomatic scheme for stitching motion clips seamlessly. Wiley and Hahn [26] and
Guo and Robergé [8] investigated spatial domain approaches to interpolate linearly a set
of example motions. Rose et al. [19] adopted a multidimensional interpolation method
to blend multiple motions together. Gleicher [6, 7] adapted the spacetime optimization
formulation for editing motion with a set of kinematic spacetime constraints. Lee and
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FIG. 1. Motion displacements

Shin [15] introduced hierarchical displacement mapping for adaptively refining a motion
to meet spacetime constraints.

�� ��������������� �������������

In this section, we present a multiresolution representation of motion. It consists of a
coarse base signal and detail coefficients that form a hierarchy of motion displacement
maps. The displacement map at each level includes a sequence of coefficients. The coef-
ficients at the base level determine the overall shape of the motion signal, and its details
are added successively with those at fine levels. In Section 3.1, we explain displacement
mapping and its mathematical backgrounds. In section 3.2, motion filtering is briefly de-
scribed. In section 3.3, we elaborate a general framework of multiresolution analysis based
on hierarchical displacement mapping and motion filtering.

���� ������������ �������

The pose of an articulated figure can be specified by its joint configurations in addition
to the position and orientation of the root segment. For uniformity, we assume that the
configuration of each joint is given by a 3-dimensional rigid transformation. Then, we can
describe the degrees of freedom at every body segment as a pair of a vector in � � and
a unit quaternion in ��. The motion data for an articulated figure comprise a bundle of
motion signals. Every signal consists of a sequence of frames, ��� ����� � �

� ����, each
of which corresponds to the position and orientation of a body segment. A frame �� �����

specifies a rigid transformation �������� that maps a point in �� to another in �� :

��������� � � �� �
��
� � ��� (1)

Here,  � ��� �� �� � �� is considered a purely imaginary quaternion ��� �� �� �� � �� .
Given two motion signals � � �������� � �

� � ��� and �� � �������
�
�� � �

� � ���,
we define their motion displacement ! � ��"��#�� � �� � ��� measured in a local
(body-fixed) coordinate system such that � ���

�
���

�
� � �������� Æ�������������. In a geometric

viewpoint, the motion frame �� � ������� at a specific time instance is transformed to
a new frame ��

� � ������
�
�� through the rotation of �� about the axis of #� by the two

times of its magnitude followed by the translation along " � (Figure 1). In later discussion,
we introduce two operators � and � such that � � � � � ! and ! � �� ��. From
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Equation (1), we have

������
�
�� � �������� �"��#��

� ���"��
��
� � ����� 	
��#���

(2)

or conversely

�"��#�� � ������
�
��� �������

� ����� ���� � ������ ����
��
� ������

(3)

where 	
��#�� denotes a 3-dimensional rotation about the axis ��
����

� �� by angle
��#�� � �. The definition of a motion displacement map in the above equation has two
advantages. First, because both linear and angular displacement vectors are represented
in the body-fixed coordinate frame, the motion displacement map is not influenced by the
choice of a global reference frame in which motion signals are represented. Second, we
do not need to distinguish position and orientation data in the displacement map because
both have an identical form: Note that a motion frame consists a heterogeneous pair, a
3-dimensional vector and a unit quaternion, while a motion displacement consists a homo-
geneous pair of 3-dimensional vectors.

��
� �$��$� %����&���

Given a vector-valued signal �� � �� and a filter mask ����� � � � � ��� � � � � ���, the basic
idea of LTI filtering is to sum the products between the mask coefficients and the sample
values under the mask at a specific position on the signal. The �-th filter response is

	���� � ������� � � � �� ���� � � � �� ����	�� (4)

A variety of methods have been investigated to apply a filter mask to orientation signals.
However, many of those methods suffer from the lack of such important filter properties as
coordinate-invariance, time-invariance, or symmetry.

Lee and Shin [16] presented a general scheme of constructing a time-domain filter for
orientation data that is a quaternion counterpart of Equation (4). Given a filter mask
����� � � � � ��� � � � � ��� of which coefficients are summed up to one, an orientation filter
can be defined as


���� � �� 	
�

� ����
�
��

�� �������	���	�	��

�
� (5)

where

�� �

� ��
�
�	� �� � if � � 	 � 
 � ����
�
�� ��� � if �
 � 	 � ��

Clearly, the unitariness of filter responses is guaranteed, because the unit quaternion space
is closed under the quaternion multiplication. Furthermore, the filter
 for orientation data
inherits important properties from its vector counterpart given in Equation (4). Here, we
summarize the properties of 
 without proofs. Detailed discussion is found in Lee and
Shin [16]. First,
 is invariant under both local and global coordinate transformations, that
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FIG. 2. Wiring diagram of the multiresolution analysis

is, �
����' � 
����'� for any � and ' � �
�. Due to this property, 
 yields identical

results independent of the coordinate system in which the orientation data are represented.
Second, 
 is time-invariant, that is, its filter response does not depend on the position in
the signal. Finally,
 is symmetric, if its mask coefficients are symmetric.

Inherent ambiguity exists in a unit quaternion signal due to antipodal equivalence. Be-
cause any unit quaternion point and its antipode represent the same orientation, the signs
of quaternion points in a captured signal are often chosen arbitrarily. However, filter re-
sponses are quite dependent on the signs and thus the signs of quaternion points must be
corrected consistently before filtering. We determine the sign of each point in the signal
such that the point is placed near its adjacent neighbors. To do so, we initially fix the
sign of the first point �� and then replace �� with ��� sequentially for each � � �, if the
geodesic distance between ���� and �� is larger than �

� .
In general, the input signal is neither infinite nor periodic. The signal has boundary

points, and the left boundary seldom has anything to do with the right boundary. A pe-
riodic extension can be expected to have a discontinuity. The natural way to avoid this
discontinuity is to reflect the signal at its endpoints to seamlessly extend the signal. Let
���� � � � ���� be a unit quaternion signal and � � ������� ��	��, � � � � �, be the
angular displacements of the signal. Then, the extension of the signal at both boundaries
yields

� �

�
��� if � � ��

������� if � � ��
(6)

���� 	$���&"���$�

Our multiresolution representation for a motion signal � �� ��� is defined by a series
of successively refined signals ���������� � � � ������� together with a series of displace-
ment maps !����!���� � � � �!�����. The construction of the multiresolution representation
is based on two basic operations: reduction and expansion (Figure 2). The expansion 
is achieved by a subdivision operation that can be considered as up-sampling followed
by smoothing. The reduction � is a reverse operation, that is, smoothing followed by
down-sampling. Smoothing operations avoid aliasing caused by down-sampling and inter-
polating missing information for up-sampling.

Our construction algorithm begins with the original motion � ��� to compute its sim-
plified versions and their corresponding displacement maps successively in fine-to-coarse
order. Suppose that we are now at the �-th level for � � � � � � �. Given a signal
���	��, we can compute a coarser signal ���� by reduction. The expansion of � ��� in-
terpolates the missing information to approximate the original signal � ��	��. Thus, the



MULTIRESOLUTION MOTION ANALYSIS �

. . .

. . .

. . .

. . .

�
�����

�
���

�
���

�
���

�
�����

�
�����

�
���

�
���

�
���

�
���

�
���

�
���

�
�����

�
���

FIG. 3. Decomposition (upper) and reconstruction (lower)

difference between them is expressed as a displacement map ! ���:

���� � ����	��� (7)

!��� � ���	�� � ����� (8)

Cascading these operations until there remains a sufficiently small number of frames in the
motion signal, we can construct a multiresolution representation that includes the coarse
base signal ���� and a series of displacement maps as shown in Figure 3(upper). Con-
versely, the original signal ���� can be reconstructed from the multiresolution represen-
tation by recursively adding the displacement map at each level to the expansion of the
signal at the same level, that is,

���� � ������ � !�����

� ������� � !������� !����� (9)

� � � � � ����� � !���� � � � � !������� !������

as shown in Figure 3(lower).
Several alternative choices can be used to implement the reduction and expansion opera-

tions. In the original work of Gauss-Laplacian image pyramids [2], Gaussian filters (which
are approximated by binomial filter masks) are used for both operations to avoid aliasing
effects that are mainly incurred by discontinuity in the input image. Unlike digital images,
motion data have �� continuity and thus we adopt Laplacian smoothing and interpolatory
subdivision for designing reduction and expansion operations, respectively, which preserve
the original signal better than Gaussian filtering

���������	 Given a detailed signal ���	�� , the reduction operator � generates its
simplified version ���� at a coarser resolution by applying a smoothing filter to � ��	��

and then removing every other frame to down-sample the signal. Hence,� can be regarded
as the composition of a down-sampling operator� of factor two and a smoothing operator

�, that is,

���� � ����	�� � �� Æ
�����	��� (10)

A popular way to implement a smoothing operator
� is to adopt a diffusion process that
leads to a local update rule

�� � �� � ������ (11)
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where � is a diffusion coefficient and� is a Laplacian operator [12, 24]. Filtering with this
rule disperses small perturbations rapidly while the original shape is degraded only slightly.
Here, Laplacian operators can be estimated for discrete signals by replacing differential
operators with forward divided difference operators such that � � � ��� , where

���� �
��	� � ��

��	� � ��
�

���� �
������	� �������

��	� � ��
� for � � ��

(12)

This update rule yields an affine-invariant filter mask that can be generalized for orientation
data by using Equation (5). For example, by adopting the second Laplacian operator � �

and letting � � �, we have a filter mask �
�� ���� �� ��� ����� and its corresponding filter,

������
�
�� � 
��������� (13)

Here, letting � � ������� ��	��,

��� �
�

��

�
��������������������	����	�

�
�

��� � �� 	
�

�
�

��
���� � ���� � �� � �	��

�
�


�������	 Given a coarse signal����, the expansion operator  approximates a cor-
responding signal ���	�� at a higher resolution by interpolation followed by error com-
pensation:

���	�� � ���� � !��� � �
	 Æ ������ � !���� (14)

where !��� represents an approximation error. To obtain a smoother signal of higher res-
olution, a cubic polynomial is a good choice for trading off smoothness for efficiency.
Thus, the operator  can be achieved by a four-point interpolatory subdivision scheme that
maps a sequence of motion frames ���� � ����� ��

�
� �� to a refined sequence ���	�� �

����	�� ���	�� ��, where the even numbered frames ���	��� ���	��� � at level � � � are the
frames ���� ��

�
� � at level �, and the odd numbered frames ���	���	���

�	�
��	�� are newly in-

serted between old frames.
To generalize the subdivision scheme to the orientation data, the scheme should be con-

sidered in two separate phases, that is, up-sampling � followed by smoothing 
	 (Fig-
ure 4). At the up-sampling phase, the odd numbered frames �� �	�

��	���
�	�
��	�� are inserted

halfway between two successive old frames using (spherical) linear interpolation. As-
suming that the motion frames are sampled uniformly, we have ��	�

��	� � �
��

�
� � �

��
�
�	�

and ��	���	� � ��	�� �

�

���� ��
�
�	��. Here, ��	��
������� denotes a spherical linear inter-

polation between two unit quaternion points �� and �� with interpolation parameter �,
that is, ��	��
������� � �� 	
��� � ����

��
� ���� [22]. At the smoothing phase, the

smoothing operator is applied only to the newly inserted points with a subdivision mask
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SmoothingUp-sampling

FIG. 4. Interpolatory subdivision

�� �
�� � ��


�� � ��


�� � ���

�
�� � to yield the refined data as follows:

��	��� � ��� �

��	���	� �
�

��
����	����� � ���	��� � ���	���	� � ��	���	��

�
�

��
������� � ���� � ����	� � ���	���

(15)

The point ��	���	� thus obtained locates halfway between ��� and ���	� on the cubic polyno-
mial curve interpolating four neighboring points��

���, ��� , ���	� and ���	� [3, 4]. Similarly,
we can use the smoothing operator in Equation (5) with the same subdivision mask to ob-
tain the orientation version of the subdivision scheme as follows:

��	��� � ��� �

��	���	� � ��	�� �

�

���� ��
�
�	�� 	
��

���� � ��	�
��

��
(16)

where �� � ������� �
�����	��.

If the smoothing filters for reduction and expansion are not induced from a bi-orthogonal
wavelet basis, then this construction scheme gives over-representations, as Gauss-Laplacian
image pyramids do, in the sense that the decomposition of � ��� into a coarser signal
������ and its detail coefficients in !����� yields extra data to store. For such memory-
critical applications as compression and progressive transmission, we can circumvent such
extra data by skipping the smoothing step of the reduction operation in a spirit of lazy
wavelets [18, 21]. Then, ������ contains the even frames of ���� and thus we have non-
zero detail coefficients in !����� only for odd frames to achieve an exact representation of
the same size.

��(� � �����$�

Though most motion captured data are sampled at a sequence of time instances of uni-
form interval, we often need to process non-uniform data to support such tasks as time
warping, which aligns motion clips with respect to time [1]. To construct a multires-
olution representation for nonuniformly sampled motion data, we further generalize the
reduction and expansion operators for a nonuniform setting. For reduction, we can easily
derive smoothing masks by estimating discrete Laplacian operators for a nonuniform set-
ting, since the divided difference operator is well defined. For expansion, the coefficients
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of the subdivision mask are derived from the cubic Lagrange polynomials [13]. The cu-
bic polynomial that interpolates four points ��������

�
� ��

�
�	���

�
�	�� defined over the knot

sequence ������� �
�
� � �

�
�	�� �

�
�	�� can be written as follows:

���� � ���������
�
�������������

�
� ����������

�
�	�����������

�
�	�� (17)

where the cardinal function ������������ is the unique cubic polynomial that interpolates� �
at ���	��� for � � � � � [11]. Note that Equation (17) is a simple generalization of Equa-
tion (15). Therefore, we can obtain a subdivision mask �� ������

�	�
��	��� �� �������

�	�
��	��� ��

�������
�	�
��	��� �� �������

�	�
��	��� to compute ��	���	� and ��	���	�.

Proper boundary handling is required for the subdivision scheme in either a uniform or
nonuniform setting. At the left boundary, for example, we determine � �	�

� from the cubic
polynomial that interpolates the four left-most points ��

� , ��� , ��� and ��� of the original
sequence ����. For orientation components, ��	�� can also be computed with the filter
mask induced from the interpolating polynomial.

(� 	�������� ��)���	�

In this section, we will show that our multiresolution representation is coordinate-invariant.
Coordinate-invariance can be explained in several ways. The first is that identical motion
clips placed at different positions in a reference frame give identical displacement maps in
their multiresolution representations. Coordinate-dependent information is retained only
in the base signal. To put it another way, we consider a coordinate transformation that
consists of 3-dimensional rotation followed by translation. If we apply that coordinate
transformation to the base signal of a multiresolution representation and reconstruct the
motion signal from the transformed representation, then that signal will be identical to the
one obtained by applying the transformation to the original signal.

To prove the coordinate-invariance of our multiresolution representation, we need to
verify the invariance involved in motion displacement mapping and filtering. First, because
motion displacements are measured in a body-fixed coordinate frame, displacement maps
are independent of the choice of the global reference frame. Let � ����� � �

����� �����

be a coordinate transformation such that

������� � �&�&�� � �� &�� (18)

for a motion signal � � �����, where � � �
� and & � �

�. The righthand side of
this equation specifies a composite transform, ������ Æ ������. ������ yields a coordinate
transformation relative to the global reference frame. For notational simplicity, we will use
� instead of ������ when this use does not cause confusion. The following lemma proves
the coordinate-invariance of motion displacement mapping.

����� ���� ��� ����������� �� ! ������� �� ��� ������� � �� �� ��

������� ����� ����� ��������� ������������� ��� ��� ! ����� � ������

��� �� ��������� ������������ � 	
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Proof: From Equations (3) and (18),

�������
� � ������� � �&��&�� � �� &���� �&�&�� � �� &��

�

�
���&���&��&�� � �� &�&�� � ��&�� ������&��&���

�

�

�
������ � ���� ����������

�
��� ���

Next, we need to verify the invariance of motion filtering. Due to the favorable properties
of our orientation filtering scheme, both reduction and expansion operations are invariant
under coordinate transformation as shown in the following lemma.

����� ���� ��� ��������� �� �������� ��������� ������� ���� ���������
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� 	

Proof: Let� be a motion filter consisting of the position and orientation filters defined
in Equations (4) and (5), respectively. As shown in Equations (10) and (14), reduction and
expansion operations are combinations of motion filtering and resampling. Since resam-
pling does not affect the coordinate-invariance, the proof will be complete if we show that
� commutes with � . Since
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Let � � ���� be the motion signal at the finest level � . Recursively applying Equa-
tions (7) and (8), the displacement map at level � � � � � is given:

!��� � ������������ � ����������� (19)

The following theorem establishes that the displacement maps are independent of the
choice of the reference frame in which the original signal � ��� is represented.
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�	�
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������� ����� ����� ��������� ������������� ��� ���

!��� � ������������ � ����������
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��� � � � � � 	

Proof: Applying Lemma 1 and Lemma 2, we have

!��� � ������������ � ����������

� � ������������ � � ����������

� ������������� � ������������

As an immediate consequence, we can easily prove the following corollary.

�
�
��� ���� ��� ���� � ������!���� � � � �!������ �� ��� ���������������

������������� �� �	 ����� ����� � �������!���� � � � �!������	

Proof: Theorem 1 shows that ���� and ����� have the same sequence of dis-
placement maps. Therefore, the proof will be complete if we show that the base signal of
����� is �����. Recursively applying Equation (7), we have

������ � � ����� � ������

*� �+���������

We have implemented a prototype motion editing system in C++ on top of Windows
NT�� and Open Inventor�� . Our model of a human has 43 DOFs that consist of six
DOFs for the pelvis position and orientation, and three DOFs for each of the other joints
except for the elbows and knees which have a single DOF. Experiments were conducted
on a Pentium PC (single Pentium III processor, 500 MHz) with various motion data (both
30 Hz and 24 Hz) that were captured at a commercial studio. In Section 5.1, we apply
our multiresolution analysis techniques to implement several motion editing operations
such as enhancement/attenuation, blending, and stitching. In Section 5.2, experimental
results will be demonstrated to compare our approach to a conventional approach that is
not coordinate-invariant.

*��� �$��$� �!����� ���&���$��

Our multiresolution representation allows us to modify its fine details at each level in-
dependently of those at other levels through the level-wise manipulation of detail coeffi-
cients. Detail coefficients at every level are represented by a pair of 3-dimensional vectors
that correspond to the displacements for position and orientation, respectively. Therefore,
the orientation components can be scaled and blended without concerning the unitariness
constraint.

����������	 A natural application of multiresolution analysis is the construction of
an LOD (level-of-detail) representation of a motion that consists of its several versions at
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1.0

0.0

-1.0
FIG. 5. Level-of-detail generation for a live-captured signal. The four curves represent the change of w-,

x-, y-, and z-components, respectively, of a unit quaternion with respect to time. From left to right, original signal
and its approximations at successively coarser resolutions

various levels of detail (Figure 5). Given a detailed signal, we can construct a series of
successively smoother versions by removing the detail coefficients level by level, starting
from the finest level. For continuous transition between levels, we also consider the frac-
tional levels �� � of a motion signal with a blending parameter � � � � �, that defines
a linear interpolation between levels � and �� �. To obtain a fractional level motion, we
scale the coefficients at level � by a factor of �, and set all coefficients zero at higher levels.
Another promising application is enhancing/attenuating the detailed features of a motion
signal to convey various moods or emotions. This application can be achieved through
the level-wise scaling of detail coefficients with different scaling factors. For the motion
“Jump and Kick” in Figure 6, we multiply the detail coefficients by constant factors to
produce the attenuated (left) and enhanced (right) versions, respectively. The enhancement
results in a higher jump and kick, while the attenuation conveys a milder emotional mood
and softer action. The effects are clearly observed along the trajectories of the feet. Fig-
ure 7 shows a motion in which the face is hit by an object. The enhanced and attenuated
versions successfully simulate the effects of hard and soft hitting, respectively.

��������	 Motion blending is a popular operation to produce a wide span of motions
from a small number of example motions. However, the fine details of motions may be
lost, if we blend them grossly without the separation of their features at different scales.
Our representation scheme is also useful for blending motion clips together. A particular
example in Figure 8 blends three motions of the same size, that is, straight walking ��,
turning while walking ��
, and straight walking with a limp ��. From these motions,
we produce a new motion ��
 that describes turning with a limp. The basic observation is
that the global shape of the target motion is similar to ��
 and its fine details are similar
to ��. Therefore, we obtain the base signal ����

�
 by applying the displacement map

�
 � �
���
�
 ��

���
� to �

���
� . Similarly, the detail coefficients in !���

�
 are computed by

applying the displacement map �
���
�� � !

���
� � !

���
� to !����
 .

�
���
�
 � �

���
� � ��

���
�
 �����

��

!
���
�
 � !

���
�
 � �!

���
� � !���� �� for � � � � ��

(20)

Here, �
 describes how a straight movement is transformed to a turning motion, and �
���
��

describes how normal walking is transformed to limping.
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���������	 In animation production, we are often required to combine canned motion
clips together into an animation of unlimited length. A simple approach would be to esti-
mate the linear and angular velocities at the boundaries of each pair of consecutive motion
clips and then perform � � interpolation. However, obtaining a robust estimate of velocity
from live captured signals is difficult because these signals usually oscillate to include fine
details that may distinguish the motion of a live creature from the unnatural motion of a
robot. Our multiresolution representation can be used for connecting highly detailed sig-
nals robustly. Our algorithm is as follows: Given two motion signals �� and ��, their
multiresolution representations are constructed to give���� � ��

���
� �!

���
� � � � � �!

�����
� �

and ���� � ��
���
� �!

���
� � � � � �!

�����
� �. Their concatenation ���� is constructed by

merging coefficients in ���� and����. Coefficients of���� at the boundary of����

and ���� are set to the average of the last coefficients of ���� and the first coefficients
of ����. Letting the size of ����

� be 
�, the number of coefficients in !���
� is given as


�� � ��	��
� � �� � �. We can then formally describe ���� as follows:
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(21)

where � � � � � and �	��
������� yields linear interpolation for translation com-
ponents and spherical linear interpolation for rotation components. Since this algorithm
stitches different levels of detail separately, the gross shape of the resulting motion signal
is not seriously affected by small noise at the boundary of the input motion clips.

*�
� 	$$&!����� ��#�&�����

To show the importance of coordinate-invariance, it would be instructive to observe
how a motion signal changes with multiresolution analysis by the choice of a reference
frame. One very popular approach is to parameterize a motion signal with six parameters:
three parameters for position components and the others for orientation components that
are represented by Euler angles. With this parameterization, multiresolution analysis for
orientation components can be done in the same way as was done for position components
[1].

In our experiments, we first construct the multiresolution representation���� � �� ����

!���� � � � �!������ of the motion signal and then transform it to reconstruct the signal at a
different position in such a way that� � � �������!���� � � � �!������. Then, we compare
the reconstructed signal with �� obtained by applying the same transformation directly
to the original signal. In our experiments, the motion signal corresponding to the pelvis
trajectory of ”Jump and Kick” in Figure 6 is used to generate nine samples by rotating
the original signal successively about the Y-axis (vertical) by the incremental angle of �

��

(Figure 10). Figure 11 shows the frame-by-frame difference between the transformed sig-
nal �� and the signals reconstructed through multiresolution analysis. We measure the
angular difference between two orientations by geodesic distance:

�������� � ����� ������� ������ � ����
��
� �������� (22)
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Here, since two antipodal points represent the same orientation, we must choose the min-
imum between � ������� ����� and � ������� ������. As proved in the previous section,
our method yields identical signals independent of their positions and orientations to be re-
constructed. Unlike our method, our experiments show that the conventional method based
on Euler angles generates quite different results depending on the transformation � .

,� 	��	������

We have presented a new multiresolution approach to motion analysis and synthesis. Our
motion representation allows us to modify the coefficients at each level in the hierarchy
independently of those at the other levels through the level-wise manipulation of detail
coefficients. Exploiting this capability, we have developed a variety of motion editing
tools that can be used for modifying, blending, and stitching highly detailed motion data.

The success of our approach is mainly due to motion filtering and hierarchical displace-
ment mapping. Our filtering scheme can handle orientations as well as positions in a co-
herent manner. The notion of hierarchical displacement mapping provides an elegant for-
mulation for multiresolution representations in which each individual detail coefficient is
represented as a pair of 3-dimensional vectors measured at a local coordinate system. This
formulation leads to multiresolution motion synthesis through coordinate-independent op-
erations.
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FIG. 6. Jump and kick. Attenuated (left); Original (center); Enhanced (right)
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FIG. 7. Face hit. Attenuated (left); Original (center); Enhanced (right)



MULTIRESOLUTION MOTION ANALYSIS ��

Φwl Φwl

Φst

Φst

FIG. 8. Frequency-based motion blending. Straight walking (upper left); Turning with a normal walk (upper
right); Walking with a limp (lower left); Turning with a limp (lower right)
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FIG. 9. Stitching live-captured motion clips. The left and right columns visualize the motion signals
corresponding to the left elbow and right knee joints, respectively. Simple concatenation of the original signals
yields a visual seam at the boundary (upper row); Level-wise stitching at the boundary connects the motion
signals seamlessly (lower row).
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FIG. 10. The same motion clips placed at different orientations in the reference frame. The red, blue and
yellow lines depict the trajectories of the left foot, right foot, and pelvis, respectively.
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FIG. 11. Coordinate-dependence of Euler angles; The original trajectory of pelvis orientation (upper); The
frame-by-frame differences between the original and the reconstructed signals (lower).


