Three-Dimensional Viewing

Jehee Lee
Seoul National University
Viewing Pipeline
Virtual Camera Model

- Viewing Transformation
 - The camera position and orientation is determined

- Projection Transformation
 - The selected view of a 3D scene is projected onto a view plane
General 3D Viewing Pipeline

- Modeling coordinates (MC)
- World coordinates (WC)
- Viewing coordinates (VC)
- Projection coordinates (PC)
- Normalized coordinates (NC)
- Device coordinates (DC)
Viewing-Coordinate Parameters

- View point (eye point or viewing position)
 \[P_0 = (x_0, y_0, z_0) \]
- View-plane normal vector \(\mathbf{N} \)
Viewing-Coordinate Parameters

• Look-at point \mathbf{P}_{ref}

\[\mathbf{N} = \mathbf{P}_0 - \mathbf{P}_{\text{ref}} \]

• View-up vector \mathbf{V}
 – \mathbf{N} and \mathbf{V} are specified in the world coordinates
Viewing-Coordinate Reference Frame

• The camera orientation is determined by the uvw reference frame

\[
\begin{align*}
n &= \frac{N}{\|N\|} = (n_x, n_y, n_z) \\
u &= \frac{V \times n}{\|V\|} = (u_x, u_y, u_z) \\
v &= n \times u = (v_x, v_y, v_z)
\end{align*}
\]
World-to-Viewing Transformation

- Transformation from world to viewing coordinates
 - Translate the viewing-coordinate origin to the world-coordinate origin
 - Apply rotations to align the u, v, n axes with the world x_w, y_w, z_w axes, respectively
World-to-Viewing Transformation

\[
R = \begin{bmatrix}
u_x & u_y & u_z & 0 \\
v_x & v_y & v_z & 0 \\
n_x & n_y & n_z & 0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
T = \begin{bmatrix}
1 & 0 & 0 & -x_0 \\
0 & 1 & 0 & -y_0 \\
0 & 0 & 1 & -z_0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]

\[
M_{wc,vc} = R \cdot T = \begin{bmatrix}
u_x & u_y & u_z & -u \cdot P_0 \\
v_x & v_y & v_z & -v \cdot P_0 \\
n_x & n_y & n_z & -n \cdot P_0 \\
0 & 0 & 0 & 1
\end{bmatrix}
\]
Perspective Projection

- Pin-hold camera model
 - Put the optical center (Center Of Projection) at the origin
 - Put the image plane (Projection Plane) *in front* of the COP
 - The camera looks down the *negative* z axis
 - we need this if we want right-handed-coordinates
Perspective Projection

- Projection equations
 - Compute intersection with PP of ray from \((x,y,z)\) to COP
 - Derived using similar triangles (on board)
 \[
 (x, y, z) \rightarrow (-d \frac{x}{z}, -d \frac{y}{z}, -d)
 \]
 - We get the projection by throwing out the last coordinate:
 \[
 (x, y, z) \rightarrow (-d \frac{x}{z}, -d \frac{y}{z})
 \]
Homogeneous coordinates

• Is this a linear transformation?

\[(x, y, z) \rightarrow (-d\frac{x}{z}, -d\frac{y}{z})\]
Homogeneous coordinates

- Trick: add one more coordinate:

\[
(x, y) \Rightarrow \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}
\]

homogeneous projection coordinates

\[
(x, y, z) \Rightarrow \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}
\]

homogeneous viewing coordinates

- Converting *from* homogeneous coordinates

\[
\begin{bmatrix} x \\ y \\ w \end{bmatrix} \Rightarrow (x/w, y/w)
\]

\[
\begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix} \Rightarrow (x/w, y/w, z/w)
\]
Perspective Projection

- Projection is a matrix multiply using homogeneous coordinates:

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1/d & 0 \\
0 & 0 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1 \\
\end{bmatrix} =
\begin{bmatrix}
x/z \\
y/z \\
-z/d \\
1 \\
\end{bmatrix}
\Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})
\]

divide by third coordinate

- This is known as **perspective projection**
 - The matrix is the **projection matrix**
 - Can also formulate as a 4x4

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1/d & 0 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1 \\
\end{bmatrix} =
\begin{bmatrix}
x/z \\
y/z \\
-z/d \\
1 \\
\end{bmatrix}
\Rightarrow (-d\frac{x}{z}, -d\frac{y}{z})
\]

divide by fourth coordinate
Perspective Projection

• The projection matrix can be much involved, if the COP is different from the origin of the \textbf{uvn} coordinates
 – See the textbook for the detailed matrix
Traditional Classification of Projections

- Three principle axes of the object is assumed
 - The front, top, and side face of the scene is apparent

Figure 7-44

Principal vanishing points for perspective-projection views of a cube. When the cube in (a) is projected to a view plane that intersects only the z axis, a single vanishing point in the z direction (b) is generated. When the cube is projected to a view plane that intersects both the z and x axes, two vanishing points (c) are produced.
Traditional Classification of Projections

3-Point Perspective

2-Point Perspective

1-Point Perspective
Perspective-Projection View Volume

• Viewing frustum
 – Why do we need near and far clipping plane?
Normalizing Transformation

• Transform an arbitrary perspective-projection view volume into the canonical view volume

• Step 1: from frustum to parallelepiped
Normalizing Transformation

• Transform an arbitrary perspective-projection view volume into the canonical view volume

• Step 2: from parallelepiped to normalized
Parallel Projection

- Special case of perspective projection
 - Distance from the COP to the PP is infinite

- Also called “parallel projection”
- What’s the projection matrix?

\[
\begin{bmatrix}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 1
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
z \\
1
\end{bmatrix}
=
\begin{bmatrix}
x \\
y \\
1
\end{bmatrix}
\Rightarrow (x, y)
\]

Slide by Steve Seitz
Taxonomy of Geometric Projections

- geometric projections
 - parallel
 - orthographic
 - axonometric
 - dimetric
 - isometric
 - oblique
 - trimetric
 - cavalier
 - cabinet
 - two-point
 - single-point
 - perspective
 - three-point
Orthographic Transformation

- Preserves relative dimension
- The center of projection at infinity
- The direction of projection is parallel to a principle axis
- Architectural and engineering drawings
Axonometric Transformation

- Orthogonal projection that displays more than one face of an object
 - Projection plane is not normal to a principal axis, but DOP is perpendicular to the projection plane
 - Isometric, dimetric, trimetric
Oblique Parallel Projections

- Projection plane is not normal to a principal axis, but DOP is perpendicular to the projection plane.
- Only faces of the object parallel to the projection plane are shown true size and shape.

![View Plane](a) ![View Plane](b)
Oblique Parallel Projections
Oblique Parallel Projections

Figure 7-39

Top view of an oblique parallel-projection transformation. The oblique view volume is converted into a rectangular parallelepiped, and objects in the view volume, such as the green block, are mapped to orthogonal-projection coordinates.
Oblique Parallel Projections

- Typically, ϕ is either 30° or 45°
- L_1 is the length of the projected side edge
 - Cavalier projections
 - L_1 is the same as the original length
 - Cabinet projections
 - L_1 is the half of the original length
Oblique Parallel Projections

- Cavalier projections
- Cabinet projections
OpenGL 3D Viewing Functions

• Viewing-transformation function
 – glMatrixMode(GL_MODELVIEW);
 – gluLookAt(x0,y0,z0,xref,yref,zref,vx,vy,vz);
 – Default: gluLookAt(0,0,0, 0,0,-1, 0,1,0);

• OpenGL orthogonal-projection function
 – glMatrixMode(GL_PROJECTION);
 – gluOrtho(xwmin,xwmax, ywmin,ywmax, dnear,dfar);
 – Default: gluOrtho(-1,1, -1,1, -1,1);
 – Note that
 • dnear and dfar must be assigned positive values
 • znear=−dnear and zfar=−dfar
 • The near clipping plane is the view plane
OpenGL 3D Viewing Functions

- OpenGL perspective-projection function
 - The projection reference point is the viewing-coordinate origin
 - The near clipping plane is the view plane
 - Symmetric: \texttt{gluPerspective}(\texttt{theta}, \texttt{aspect}, \texttt{dnear}, \texttt{dfar})
 - General: \texttt{glFrustum}(\texttt{xwmin}, \texttt{xwmax}, \texttt{ywmin}, \texttt{ywmax}, \texttt{dnear}, \texttt{dfar})
Line Clipping

• Basic calculations:
 – Is an endpoint inside or outside the clipping window?
 – Find the point of intersection, if any, between a line segment and an edge of the clipping window.

 ✓ Both endpoints inside: trivial accept
 ✓ One inside: find intersection and clip
 ✓ Both outside: either clip or reject
Cohen-Sutherland Line Clipping

- One of the earliest algorithms for fast line clipping
- Identify trivial accepts and rejects by bit operations

< Region code for each endpoint >

<table>
<thead>
<tr>
<th>Bit 4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>above</td>
<td>below</td>
<td>right</td>
<td>left</td>
</tr>
</tbody>
</table>

Clipping window
Cohen-Sutherland Line Clipping

- Compute region codes for two endpoints
- If (both codes = 0000) trivially accepted
- If (bitwise AND of both codes ≠ 0000) trivially rejected
- Otherwise, divide line into two segments
 - test intersection edges in a fixed order.
 (e.g., top-to-bottom, right-to-left)

<table>
<thead>
<tr>
<th>1001</th>
<th>1000</th>
<th>1010</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0000</td>
<td></td>
</tr>
<tr>
<td>0001</td>
<td></td>
<td>0010</td>
</tr>
<tr>
<td>0101</td>
<td>0100</td>
<td>0110</td>
</tr>
</tbody>
</table>

Clipping window
3D Clipping Algorithms

- Three-dimensional region coding
Cyrus-Beck Line Clipping

• Use a parametric line equation

\[P(t) = P_0 + t(P_1 - P_0), \quad 0 \leq t \leq 1 \]

• Reduce the number of calculating intersections by exploiting the parametric form

• Notations
 – \(E_i \): edge of the clipping window
 – \(N_i \): outward normal of \(E_i \)
 – An arbitrary point \(P_{E_i} \) on edge \(E_i \)
Cyrus-Beck Line Clipping

\[N_i \cdot (P(t) - P_{E_i}) < 0 \iff \text{a point in the inside halfplane} \]

\[N_i \cdot (P(t) - P_{E_i}) = 0 \iff \text{a point on the line containing the edge} \]

\[N_i \cdot (P(t) - P_{E_i}) > 0 \iff \text{a point in the outside halfplane} \]
Cyrus-Beck Line Clipping

- Solve for the value of t at the intersection of P_0P_1 with the edge
 - $N_i \cdot [P(t) - P_{Ei}] = 0$ and $P(t) = P_0 + t(P_1 - P_0)$
 - Letting $D = (P_1 - P_0)$,

\[
t = \frac{N_i \cdot [P_0 - P_{Ei}]}{-N_i \cdot D}
\]

- Where
 - $N_i \neq 0$
 - $D \neq 0$ (that is, $P_0 \neq P_1$)
 - $N_i \cdot D \neq 0$ (if not, no intersection)
Cyrus-Beck Line Clipping

• Given a line segment P_0P_1, find intersection points against four edges
 – Discard an intersection point if $t \notin [0,1]$
 – Label each intersection point either PE (potentially entering) or PL (potentially leaving)
 – Choose the smallest (PE, PL) pair that defines the clipped line

\[N_i \cdot P_0P_1 < 0 \implies \text{PE} \]
\[N_i \cdot P_0P_1 > 0 \implies \text{PL} \]
3D Clipping Algorithms

- Parametric line clipping

\[P(t) = P_0 + t(P_1 - P_0), \quad 0 \leq t \leq 1 \]

- Inside halfplane: \(N_i \cdot (P(t) - P_{F_i}) < 0 \) \(\iff \) inside halfplane
- On the face: \(N_i \cdot (P(t) - P_{F_i}) = 0 \) \(\iff \) on the face
- Outside halfplane: \(N_i \cdot (P(t) - P_{F_i}) > 0 \) \(\iff \) outside halfplane
Polygon Fill-Area Clipping

• Polyline vs polygon fill-area

• Early rejection is useful
Sutherland-Hodgman Polygon Clipping

- Clip against 4 infinite clip edges in succession
Sutherland-Hodgman Polygon Clipping

- Accept a series of vertices (polygon) and outputs another series of vertices

- Four possible outputs

- Diagram showing four different cases:
 1. Out → In: Output: V'_1, V_2
 2. In → In: Output: V_2
 3. In → Out: Output: V'_1
 4. Out → Out: Output: none
Sutherland-Hodgman Polygon Clipping

- The algorithm correctly clips convex polygons, but may display extraneous lines for concave polygons.
Weiler-Atherton Polygon Clipping

- For an outside-to-inside pair of vertices, follow the polygon boundary.
- For an inside-to-outside pair of vertices, follow the window boundary in a clockwise direction.
Weiler-Atherton Polygon Clipping

- Polygon clipping using nonrectangular polygon clip windows

![Diagram of Weiler-Atherton Polygon Clipping](image)

Figure 6-30

Clipping a polygon fill area against a concave-polygon clipping window using the Weiler-Atherton algorithm.
3D Clipping Algorithms

• Three-dimensional polygon clipping
 – Bounding box or sphere test for early rejection
 – Sutherland-Hodgman and Weiler-Atherton algorithms can be generalized
Programming Assignment #2 (3D Viewer)

- You are required to implement a 3D OpenGL scene viewer
- The viewer should use a virtual trackball to rotate the view
 - The point of rotation is by default the center of the world coordinate system, but can be placed anywhere in the scene
- The viewer should allow you to translate in the screen plane as well as dolly in and out (forward/backward movement)
- The viewer should allow you to zoom in/out (camera field of view)
- Your are required to submit a report of at most 3 pages
 - Describe how to use your program
 - Describe what you implemented, and what you haven’t
Programming Assignment #2 (3D Viewer)

- Virtual trackball
 - A trackball translates 2D mouse movements into 3D rotations
 - This is done by projecting the position of the mouse on to an imaginary sphere behind the viewport
 - As the mouse is moved the camera (or scene) is rotated to keep the same point on the sphere underneath the mouse pointer
Programming Assignment #2 (3D Viewer)

- Virtual trackball

\[
\text{Axis} = \mathbf{v}_1 \times \mathbf{v}_2 \\
\theta = \arccos \left(\frac{\mathbf{v}_1 \cdot \mathbf{v}_2}{|\mathbf{v}_1| \cdot |\mathbf{v}_2|} \right)
\]
(Extra credits)

Show all: Decide the camera position and orientation such that the entire scene is viewed in a single screen:

- Pull the camera backward
- Change the viewing direction to aim the center of the scene

Seek: Pick a 3D point in the scene by the mouse pointer and place the center of rotation at that point.