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Abstract

Geometric computing with three-dimensional rotations and orientations is a fundamental issue in
three-dimensional computer graphics. Our approach was inspired by affine geometry and coordinate-
free geometric programming. The basic idea of affine geometry is to make a distinction between points
and vectors. The relation between orientations and rotations is analogous to the relation between points
and vectors. Similarly to affine geometry, we argue that rotations and orientations should be represented
differently in geometric computing. We show that, in three-dimensional space, unit quaternions (or
rotation matrices) cannot parameterize rotations without singularity, but rotation vectors can. Conversely,
rotation vectors cannot parameterize orientations without singularity, but unit quaternions (or rotation
matrices) can. From these observations, we suggest that orientations should be represented by unit
quaternions (or rotation matrices) and rotations should be represented by three-dimensional vectors.
Furthermore, a set of operations are identified for combining rotations and orientations. Those operations
are geometrically meaningful and independent of the choice of reference coordinate frames.
Keywords: Rotation and orientation, coordinate-free geometric programming, unit quaternion, rotation
vector, axis-angle representation.

1 Introduction

Geometric computing with three-dimensional rotations and orientations is a fundamental issue in three-
dimensional computer graphics. Rotation is circular movement, while the orientation of a rigid object refers
to the state of the object being oriented. These two geometric concepts have conventionally been considered
to be interchangeable because the orientation of an object can be represented as a rotation from the reference
orientation given a coordinate frame.

The goal of this paper is to provide a useful perspective of understanding, representing, and manipulating
3-dimensional orientations and rotations for geometric computing. Our approach is inspired by affine geom-
etry and coordinate-free geometric programming. The key idea of affine geometry is to make a distinction
between points and vectors, and define operations for combining them. Based upon affine geometry, Gold-
man [5, 6] and DeRose [3, 4, 16] pioneered a method of writing graphics programs that are independent
of the choice of reference coordinate frames. The study on geometric algebra pursues a similar goal with
various geometric primitives rather than just vectors and points [12, 13].

There exists a strong analogy between the way that points are related to vectors and the way that orientations
are related to rotations. Both points and orientations are geometric entities that describe states of geometric
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Figure 1: An example of coordinate-dependent operations. The element-wise addition of two points can
actually be interpreted as the addition of two vectors that originate from the origin. The vector addition
produces inconsistent results depending on where the origin is.

objects, while vectors and rotations are related to the change of states. Similarly to affine geometry, we found
that a simple geometric algebra is available for representing and manipulating three-dimensional orientations
and rotations. Central to our formalism is making a clear distinction between orientations and rotations,
which are represented differently and appropriately for avoiding singularity in parameterization. We will
show that, in three-dimensional space, unit quaternions (or rotation matrices) cannot parameterize rotations
without singularity, but rotation vectors can. Conversely, rotation vectors cannot parameterize orientations
without singularity, but unit quaternions (or rotation matrices) can. From these observations, we will argue
that orientations should be represented by unit quaternions (or rotation matrices) and rotations should be
represented by rotation vectors. Furthermore, we will identify a set of operations for combining them.
Those operations are geometrically meaningful and coordinate-invariant. Since the algebraic structure and
the representation power of rotation matrices are equivalent to those of unit quaternions, rotation matrices
can be used instead of unit quaternions and vice versa (see [17] for details). So, we will not mention rotation
matrices henceforth.

“Coordinate-free” does not imply that coordinates are unnecessary. We need to use coordinates in order
to implement geometric algorithms. It is just that the geometric algorithms will produce consistent results
independent of the choice of the reference frames in which the input data are represented. In that sense,
“coordinate-invariance” might be an appropriate term rather than “coordinate-free”. We use these two terms
interchangeably throughout this paper.

The invariance on the choice of reference frames is of practical importance in producing the animation of
rigid bodies and articulated figures because many existing animation systems have different conventions
on choosing coordinate and joint reference frames. The operations between orientations and rotations are
further generalized for the representation and manipulation of rigid body and articulated figure motions.

The main contribution of our work is the extension of the range of coordinate-invariant geometric program-
ming by adding new entities and operations. The benefit of coordinate-invariant geometric programming is
manifold. It provides us with geometric reasoning and intuition for the steps of our geometric programs.
This allows us to write geometric programs relying on geometric reasoning rather than coordinate manipula-
tions. It means that we do not need to fully understand all the details about quaternion-related mathematics
for geometric programming.
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2 Rotation and Orientation

Consider a rigid object in three-dimensional space. Affine geometry suggests that its position is represented
by points, which can be distinguished from vectors. A point, as a geometric concept, is independent of
the choice of a reference frame or an origin. Given a reference frame, a point can have its coordinates
with respect to the origin. Vectors on the other hand have the attributes of direction and magnitude, but
no fixed position. A vector can specify the relative movement of a point from one position to the other.
With a reference frame fixed, we can represent any point as a vector that comes from the origin to the
point. However, points and vectors are still different from a geometry point of view. An algebraic operation
between points and vectors is geometrically meaningful if the result is independent of the choice of reference
coordinate frames. For example, the sum of two vectors is well-defined algebraically and geometrically.
However, the sum of two points is algebraically computable, but geometrically meaningless because the
result depends on where the origin is (See Figure 1). Affine geometry defines a set of coordinate-invariant
operations between points and vectors, which are summarized in Figure 4(left).

We observed that the relation between orientations and rotations is, in many aspects, analogous to the relation
between points and vectors. From the geometry point of view, the orientation of a rigid object is independent
of the choice of a reference orientation. Given a reference orientation, any orientation can be represented
with respect to the reference orientation (see Figure 2(Left)). On the other hand, Euler’s rotation theorem
states that any rotation of a rigid object can be described by a fixed axis and an angle of rotation about
the axis. The axis and the angle can be represented as a tuple of a unit vector v̂ and a scalar value θ .
The rotation can also be represented by a single vector such that v = θ v̂ ∈ R

3. A single rotation vector is
usually preferred over a separate axis-angle representation because the identity transform (zero rotation) is
uniquely represented by the zero vector, while the identity transform can be represented by any combination
of the zero angle and an arbitrary axis. The rotation have the attributes of direction and magnitude, but no
fixed orientation. Rotation vectors can be arbitrarily long and rotation vectors longer than 2π correspond to
multiple spinning of a rigid body.

With a reference frame fixed, we can represent any orientation of a rigid object as a relative rotation that
brings the object aligned with the reference orientation to the target orientation. The relative rotational move-
ment between any pair of two orientations (or coordinate systems) can be specified by a rotation vector(see
Figure 2(Right)). However, in this case, the length of the vector is limited to interval [0,2π], which causes
singularities in orientation parameterization. This observation has motivated the use of unit quaternions for
the representation of three-dimensional orientations.

The mappings between orientations and rotations are singular in the sense that they have either many-to-
one correspondences or discontinuous jumps. Therefore, orientations and rotations should be parameterized
differently in order to avoid singularities. We will argue that we have to use vectors for parameterizing
rotations and unit quaternions for orientations in three-dimensional space. We will discuss these singularity
issues in the following sections: The two-dimensional cases in section 2.1 and the three-dimensional cases
in section 2.2.

2.1 Two-dimensional space

Consider a rigid object that can rotate about the origin of the reference coordinate system in two-dimensional
space. The rotation of a two-dimensional object has a single degree of freedom and therefore can be param-
eterized by scalar rotation angle θ . A positive angle denotes a counter-clockwise rotation and conversely
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Figure 2: The reference coordinate system is depicted by the white bunny and XYZ axes. (Left) The ori-
entation of the blue bunny can be described by a unit quaternion with respect to the reference coordinate
system. X ′Y ′Z′ axes are a local coordinate system of the blue bunny. (Right) Euler’s rotation theorem states
that a fixed axis v̂ and an angle θ can always be found such that the rotation of the white bunny about axis
v̂ by angle θ will bring it to the orientation of the blue bunny.

a negative angle denotes a clockwise rotation. A scalar value larger than 2π or smaller than −2π denotes
multiple spinning of the object.

Parameterizing orientations. The orientation of an object can also be represented by scalar rotation angle
from a given reference orientation, but many angles θ ± 2nπ for any integer n are mapped to a single
orientation. To avoid many-to-one correspondences between orientations and rotation angles, the range
of θ should be limited to a 2π-interval such as [−π,π] or [0,2π]. Consider a continuously-moving rigid
object and its trajectory function θ(t) varying over time t. Confined within this 2π-interval, the trajectory of
angle θ(t) may include discontinuous jumps from one boundary to the other even though the corresponding
angular motion is continuous (see Figure 3 (left)). This problem can be avoided by using an extra parameter
such that a point (x,y) on the unit circle represents an orientation. This representation is redundant in
the sense that it uses more parameters than actually needed. The redundancy is compensated by the unit-
length constraint x2 + y2 = 1. A point (x,y) can also be viewed as a complex number c = x + yi (see
Figure 3 (right)). From x = cosθ and y = sinθ , complex number c is related to angle θ by exponentiation
such that c = cosθ + isinθ = exp(iθ).

Parameterizing rotations. So far, we explained that complex numbers of unit length provide us with a
non-singular parameterization of two-dimensional orientations. One might want to use complex numbers
for parameterizing rotations as well for simplicity and uniformity. Unfortunately, complex numbers of unit
length cannot parameterize rotations unambiguously. The ambiguity can easily be observed:

• A rotation can be partitioned into a series of partial rotations. The composition of partial rotations
exhibits the trajectory of rotational movements. For example, a counter-clockwise rotation by angle π
and a clockwise rotation by angle −π travel different paths to end up with the same same destination,
which is represented by complex number cosπ + isinπ = cos(−π)+ isin(−π) = −1.

• A family of rotational actions by angle of θ ± 2nπ for any integer n represent a series of different
rotational actions, but all of these actions are actually mapped to a single complex number exp(iθ) =
exp

(
i(θ ± 2nπ)

)
(see an example in Figure 3). This makes sense, since a rotation of 2nπ about any

fixed axis is equivalent to no rotation at all if we disregard the course of action and take account of
only the result of action.
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Figure 3: Rotations and orientations in two-dimensional space. The orientation of a two-dimensional rigid
object can be represented by either a scalar angle from a reference orientation or a complex number of unit
length. (Left and Bottom) By representing orientations by scalar angles, the orientation of a continuously-
moving rigid object could be mapped to a time-varying function with discontinuous jumps at the boundary
of the 2π-interval. (Right) The use of complex numbers can circumvent this singularity problem because
any continuous motion can be mapped to a continuous complex function. However, complex numbers may
not be appropriate for parameterizing rotations because many different angular motions (such as counter-
clockwise rotation by angle θ and clockwise rotation by angle θ − 2π) are mapped to the same complex
number.

These examples show that parameterization by complex numbers is ambiguous and cannot distinguish rota-
tions travelling different paths. This observation allows us to conclude that we have to use scalar angles for
parameterizing rotations and complex numbers for orientations in two-dimensional space.

Is a rotation with an angle beyond 2π necessary for geometric computing? A rotation can be consid-
ered as a transformation that turns one orientation into another. All of such transforms can be represented by
rotations with angles smaller than 2π . There can be two arguments about this question. The first argument
is about the limited interval of rotation angles, which necessarily entails discontinuity issues. If the range
of rotation angles is limited to any 2π interval, the parameterization includes discontinuous jumps at the
boundary of the interval. Discontinuities are certainly undesirable for representing the circular nature of
rotations. The second argument is about the interpolation of rotations. For example, a rotation by θ and
another rotation by θ + 2π about the same axis produce different rotational actions when their trajectories
are interpolated.

2.2 Three-dimensional space

The above arguments can be generalized to three-dimensional space by replacing complex numbers with
unit quaternions and scalar angles with rotation vectors. As mentioned earlier, three-dimensional rotations
can naturally be described by an axis and an angle, which form a rotation vector. There exists one-to-one
correspondences between three dimensional rotations and vectors.
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a. (point) + (point) → (UNDEFINED)

b. (vector) ± (vector) → (vector)

c. (point) ± (vector) → (point)

d. (point) - (point) → (vector)

g. (scalar) · (vector) → (vector)

h. (scalar) · (point) → (point) if scalar=1

→ (vector) if scalar=0

→ (UNDEFINED) otherwise

j. ∑ (scalar) · (vector) → (vector)

k. ∑ (scalar) · (point) → (point) if ∑ scalar=1

→ (vector) if ∑ scalar=0

→ (UNDEFINED) otherwise

A. (orientation) · (orientation) → (UNDEFINED)

B. exp(rotation) · exp(rotation) → exp(rotation)

C. (orientation) · exp(rotation) → (orientation)

exp(rotation) · (orientation) → (orientation)

D. (orientation)−1 · (orientation) → exp(rotation)

(orientation) · (orientation)−1 → exp(rotation)

E. log(exp(rotation)) → (rotation)

F. log(orientation) → (UNDEFINED)

G. (scalar) · (rotation) → (rotation)

exp(rotation)(scalar) → exp(rotation)

H. (orientation)(scalar) → (orientation) if scalar=1

→ exp(rotation) if scalar=0

→ (UNDEFINED) otherwise

I. (rotation) ± (rotation) → (rotation)

J. ∑ (scalar) · (rotation) → (rotation)

K. affine combi(orientations) → (ILL-DEFINED)

Figure 4: (Left) Operations between points and vectors in affine geometry; (Right) Operations between
three-dimensional orientations and rotations. Orientations are represented by unit quaternions and rotations
are represented by rotation vectors. Note that both (orientation) and exp(rotation) are unit quater-
nions, but represent different geometric entities.

Parameterizing orientations using rotation vectors suffers from either many-to-one correspondences or dis-
continuous jumps as we observed in the two-dimensional cases because the angle of rotation is limited
within a 2π-interval for any given axis. This problem can be circumvented by using redundant parameter-
ization. We can represent any three-dimensional orientation as a unit quaternion q = w + xi + yj + zk =
(w,x,y,z) ∈ S

3. The redundancy is compensated by the unit length constraint w2 + x2 + y2 + z2 = 1.

Rotation vectors and unit quaternions can be converted to each other by using exponential and logarithmic
mapping. Given a purely imaginary quaternion (a.k.a. rotation vector) q = (0,v) = (0,θ v̂), quaternion
exponentiation always produces a quaternion of unit length, which can be expressed in a closed-form:
exp(0,v) = (cosθ , v̂sinθ). The unit quaternion associated with a rotation about axis v̂ = v

‖v‖ by angle

θ = ‖v‖ is q = exp(0,v/2). We assume that unit quaternion q describes a rotation mapping Rq(u) = quq−1

for u ∈ R
3. Here, vector u = (x,y,z) is interpreted as a purely imaginary quaternion (0,x,y,z) ∈ S

3. Under
this assumption, the left multiplication of a unit quaternion represents a rotation with respect to a fixed,
world coordinate frame. Conversely, the right multiplication represents a rotation with respect to a local,
moving coordinate frame. Two antipodal quaternions q and −q are mapped to a single orientation, but this
mapping is still non-singular because the mapping is consistently two-to-one for any orientation.

Though the use of unit quaternions provides us with a useful non-singular parametrization for orientations,
it cannot parameterize rotations without ambiguity. This can be shown as follows: Consider a family of
rotations about axis v̂ by angle θ ±2nπ for all integer n. All of these different rotational actions are mapped
to a single unit quaternion or its antipode such that exp(0, θ2 v̂) = exp(0, θ±2nπ

2 v̂) or −exp(0, θ±2nπ
2 v̂). Note

that both represent the same rotation. From these observations, we can conclude that we have to use vectors
for parameterizing rotations and unit quaternions for orientations in three-dimensional space.
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3 Operations between Rotations and Orientations

The operation between orientations and their relative rotations is coordinate-invariant if the result of the
operation is independent of the choice of reference orientations. For example, consider two unit quaternions
q1 and q2 representing two orientations of a rigid object in three-dimensional space. The multiplication
of these two quaternions is computable, but the result depends on the choice of the reference orientation.
This multiplication is neither coordinate-invariant nor corresponding to any tangible geometric meaning. It
is analogous to the coordinate-dependence of point addition illustrated in Figure 1. We identified a set of
coordinate-invariant operations between three-dimensional orientations and rotations (see Figure 4(right)).
In this section, we will explain the operations one by one.

Unit quaternion q ∈ S
3 may represent either the orientation of a rigid object or its relative rotation. For

clarity, we will use q only to represent the orientation, and the relative rotation will be denoted by the expo-
nential of a rotation vector, that is, exp(0,v/2) ∈ S

3. For notational convenience, we define two operators:
q = ẽxp(v) = exp(0,v/2) and its inverse l̃og(q) = v.

3.1 Multiplication

The multiplication of two unit quaternions indicates either the composition of two rotations or the rotation of
a body from one orientation to the other. Let u,v∈R

3 be vectors representing rotations. The composition of
two rotations is computed as the multiplication of exponentials of two vectors (see Operation B in Figure 4):
ẽxp(w) = ẽxp(u)ẽxp(v). Note that w �= u+v, in general. It holds if vectors u and v are parallel.

Let q ∈ S
3 be a unit quaternion representing the orientation of a rigid body. Multiplication of ẽxp(v) and q

indicates a rotation of the body about axis v
‖v‖ by angle ‖v‖ (see Figure 5). That brings the body to a new

orientation q′. Here, rotation vector v may be represented in a fixed coordinate frame such that q′ = ẽxp(v)q
or in a moving coordinate frame attached to the body such that q′ = qẽxp(v) (see Operation C in Figure 4).

3.2 Displacement

Given any two orientations q and q′ of a rigid body, we can always find a single rotation that brings the
body from one orientation to the other according to Euler’s rotation theorem. The angular displacement v
between given two orientations can be easily derived from q′ = ẽxp(v)q or q′ = qẽxp(v) depending on in
which coordinate frame we intend to represent v: ẽxp(v) = q′q−1 if v is represented in a fixed coordinate
frame, and ẽxp(v) = q−1q′ in a moving coordinate frame (see Operation D in Figure 4).

3.3 Exponential and Logarithm

The quaternion exponentiation is a many-to-one mapping and has a singular point at the antipole (−1,0,0,0)∈
S

3. To define the inverse map, the domain is usually limited to ‖v‖ < π . Within the limited domain, the
exponential map is one-to-one and thus its inverse map log : S

3\(−1,0,0,0) → R
3 is well-defined.

From a geometry point of view, the logarithm of ẽxp(v) produces a vector describing a rotation (see Opera-
tion E in Figure 4). Note that, in general, v �= l̃og(ẽxp(v)) because of the limited domain and range of the

logarithmic map. For example, l̃og

(
ẽxp

(
(θ +2π)v̂

))
= θ v̂ for any angle θ < π and unit vector v̂.
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Figure 5: The relative rotation between any two orientations q and q′ can be described as a vector v ∈ R
3

that specifies a rotation around a fixed axis v̂ = v
‖v‖ by the amount of angle θ = ‖v‖.

Let q ∈ S
3 be the orientation of a rigid object. The logarithm of q can be interpreted as a rotation vector

w = l̃og(q). Since this vector is associated with a rotation from the reference orientation to the current
orientation q, the coordinates of w are necessarily dependent on the choice of the reference orientation (see
Operation F in Figure 4).

3.4 Scalar Multiplication

Let v ∈ R
3 be a vector representing the spinning motion of a rigid object. Its scalar multiple αv ∈ R

3 also
represents a spinning motion around the same axis but the magnitude of its rotation angle is scaled by a
factor of α (see Operation G in Figure 4). The power of ẽxp(v) to a scalar value α has the same geometric
meaning since ẽxp(αv) = ẽxp(v)α . On the other hand, the power of orientation q to a scalar value α can be
considered as qα = ẽxp(α l̃og(q)), which is not well-defined because l̃og(q) is undefined (see Operation H
in Figure 4). There are two exceptions where qα is well-defined. If α = 1, q1 = q trivially. If α = 0, q0 = I
where the identity quaternion I = (1,0,0,0) indicates zero rotation.

3.5 Linear Combination of Rotations

The addition of two rotation vectors is yet another way of combining two rotations, which is different
from applying two rotations one after the other: ẽxp(v)ẽxp(u) �= ẽxp(v + u) �= ẽxp(u)ẽxp(v), in general
(see Operation I in Figure 4). This operation has been used for decades without having a fundamental
understanding of its geometric meaning, which was discovered recently by Alexa [1]. He showed that the
addition of two rotation vectors allows the indicated rotations to be divided into infinitely small partial

rotations and intertwined in such a way that ẽxp(u+v) = limn→∞

(
ẽxp(u)1/nẽxp(v)1/n

)n

. Since both scalar

multiplication and addition of rotations are well-defined, their linear combination is also well-defined (see
Operation J in Figure 4 and Figure 6).
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Figure 6: The linear combination of two rotations. The white bunny represents the reference orientation. The
trajectories of rotations v1 = (0,π,0) and v2 = (5

2π,0,0) are depicted along green and red axes, respectively.
Linear combination v = t1v1 + t2v2 are depicted in the range of 0 < t1, t2 < 1.

Figure 7: The affine combination of orientations. Each orientation on the grid is computed as an affine
combination of four key orientations depicted as wireframes. Weight values are determined to provide a
smooth parameterization on the xy plane using radial basis functions.
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3.6 Affine Combination of Orientations

Loosely speaking, the affine combination is the weighted average of orientations, where the sum of weights
equals one (see Figure 7). The affine combination of two orientations is well-defined and called slerp (spher-
ical linear interpolation), which was coined by Shoemake [21]. The slerp can be implemented using three
coordinate-invariant operations (Operations C, D, G in Figure 4) such that slerpt:1−t(q1,q2) = q1(q−1

1 q2)t .
Therefore, the slerp is also coordinate-invariant.

Unfortunately, the affine combination of more than two orientations is ill-defined. In other words, it can be
defined in several different ways and each definition produces different results. The definition by Buss and
Fillmore [2] is widely accepted in the graphics community. The affine combination q̄ of orientations {qi}
with weights {wi} is defined by

∑
i

wi l̃og(qiq̄−1) = (0,0,0),

where l̃og(qiq̄−1) is the displacement between qi and q̄. According to this definition, q̄ can be determined
uniquely if all qi’s lie in a hemisphere of S

3. Though this definition is intuitive and rigorous, its practical use
is limited because the evaluation of q̄ requires an iterative numerical solution. In the side box, we summarize
briefly many other definitions that allow either closed-form or iterative solutions.

4 In Side Box

Since Shoemake [21] introduced quaternion Bézier curves to the computer graphics community two decades
ago, many researchers have explored ways of constructing orientation curves, which are defined as the affine
combination of key orientations. A number of methods have been developed and can be classified into sev-
eral categories: Rectification, linearization, multi-linear, functional optimization, and incremental lineariza-
tion. Among these methods, it is difficult to judge if one method is generally better than the others. No
ultimate solution has been found so far and the adequate method may well be determined by the application.

Rectification. Since the unit quaternion space is not closed under addition and scalar multiplication, the
weighted average of unit quaternions is, in general, not a quaternion of unit length. One popular approach is
to compute the weighted average of unit quaternions as if they are four-dimensional vectors and then rectify
the result to ensure the unit magnitude by simply normalizing its length. The affine combination of rotation
matrices can be computed similarly by orthogonalizing the weighted sum of matrices [9]. These simple
methods actually work reasonably well if all orientations are close to each other.

Linearization. The linearization method keeps quaternions on the unit sphere by using exponential and
logarithmic maps [7, 8]. The basic idea is to transform orientation data into a vector space through logarith-
mic mapping, compute the affine combination of the transformed vectors, and then transform the result back
to the unit quaternion space through exponentiation. A similar idea using rational maps has also been ex-
plored [10]. As mentioned in the previous section, the logarithm of a unit quaternion is coordinate-dependent
if the unit quaternion represents an orientation. Hence, the linearization method is also coordinate-dependent
and thus can be useful only if the application has an inherent coordinate frame which should not be changed.

Multi-linear. The affine combination of multiple points can always be reduced to a series of affine com-
binations between two points. From this observation, the multi-linear methods utilize a series of slerps for
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computing the affine combination of multiple orientations. A typical example is the construction of quater-
nion Bézier curves suggested by Shoemake [21]. The multi-linear method inherits the desirable coordinate-
invariance property from the slerp. The downside of this approach is that the result is inconsistent because
it is dependent on the order that the series of slerps is applied. The multi-linear method plays a useful role
if a suitable ordering scheme is provided, such as the de Casteljau algorithm for Bézier curves [21] and the
subdivision algorithm for B-splines [19].

Functional optimization. Several researchers addressed the problem from the viewpoint of functional
optimization [2, 14, 20]. The affine combination of points can be viewed as the result of least squares
minimization of a certain energy functional, which can be generalized for combining unit quaternions. The
least squares minimization with unit quaternions does not allow a closed-form solution and thus uses an
iterative numerical solver such as the Newton-Raphson method.

Incremental linearization. In many applications, unit quaternions to be combined are arranged in a se-
quence and indexed by a single integer index. The control points of orientation curves and the time-series of
orientation samples are good examples. In those cases, a sequence of orientations can be described by a se-
quence of incremental rotations between each pair of successive orientations. The incremental linearization
method uses the incremental rotations to avoid non-linear operations between orientations [11, 15, 18].

5 Extensions

5.1 Rigid body

Extending our formulation to rigid body motion is straightforward. The pose of a rigid object can be spec-
ified as its position and orientation. The spatial displacement of the object can be represented as a rigid
transformation, that is, rotation followed by translation. Given rotation q and translation v, the rigid trans-
formation T(v,q) of any vector u ∈ R

3 is denoted by T(v,q)(u) = quq−1 +v. The relation between the poses
and displacements of a rigid object is analogous to the relation between orientations and rotations. We
derive a set of operations for a rigid object shown in Figure 8 using six primitive operations between vector-
vector and quaternion-vector tuples: multiplication, division, addition/subtraction, scalar multiplication, and
the generalizations of exponential and logarithm maps. Letting q ∈ S

3 be a unit quaternion, u,v ∈ R
3 be

three-dimensional vectors, and α ∈ R be a scalar value, six primitive operations are

(v1,q1)⊗ (v2,q2) = (q1v2q−1
1 +v1,q1q2)

(v1,q1)	 (v2,q2) = (q−1
2 (v1−v2)q−1

2 ,q−1
2 q1)

(v1,u1)± (v2,u2) = (v1±v2,u1±u2)
α · (v,u) = (αv,αu)
ẽxp(v,u) = (v, ẽxp(u))

l̃og(v,q) = (v, l̃og(q))

Here, the multiplication is derived from the composition of two rigid transformations, which yields T(v1,q1) ◦
T(v2,q2)(u) = q1(q2uq−1

2 + v2)q−1
1 + v1 = T(q1v2q−1

1 +v1,q1q2)(u). The division is defined such that p′ 	p =
ẽxp(d) holds if p⊗ ẽxp(d) = p′, where p,p′ ∈ S

3×R
3 are the poses of a rigid object and d ∈ R

3×R
3 is the

displacement between these poses.
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A. (pose) ⊗ (pose) → (UNDEFINED)
B. exp(disp) ⊗ exp(disp) → exp(disp)
C. (pose) ⊗ exp(disp) → (pose)
D. (pose) 	 (pose) → exp(disp)
E. log(exp(disp)) → (disp)
F. log(pose) → (UNDEFINED)
G. (scalar) · (disp) → (disp)

exp(disp)(scalar) → exp(disp)
H. (pose)(scalar) → (pose) if scalar=1

→ exp(disp) if scalar=0
→ (UNDEFINED) otherwise

I. (disp) ± (disp) → (disp)
J. ∑ (scalar) · (disp) → (disp)
K. affine combination(poses) → (ILL-DEFINED)

Figure 8: Operations between the poses and displacements of a rigid object. The rigid pose (pose) is
represented as a 2-tuple of a unit quaternion and a vector specifying the orientation and position, respectively,
of the object. Its displacement (disp), measured with respect to a moving coordinate frame, is represented
as a 2-tuple of vectors specifying the rotation and translation, respectively, of the object.

5.2 Articulated Figure

Our formulation can further be generalized to articulated figure motions. Let P = (v0,q1,q2, · · · ,qn) be
the pose of an articulated figure, where v0 ∈ R

3 and q1 ∈ S
3 are the position and orientation, respectively,

of its root segment and qk ∈ S
3 for k > 1 is the relative orientation of joint k with respective to its parent.

The displacement between two articulated figure poses can be denoted by an array of angular and linear
displacement vectors D = (u0,u1, · · · ,un) ∈ R

3(n+1). We can define primitive operations between poses and
displacements as follows:

P1⊗P2 = (q1,1v2,0q−1
1,1 +v1,0,q1,1q2,1, · · · ,q1,nq2,n)

P1	P2 = (q−1
2,1(v1,0−v2,0)q−1

2,1,q
−1
2,1q1,1, · · · ,q−1

2,nq1,n)

D1 ±D2 = (u1,0±u2,0, · · · ,u1,n±u2,n)
α ·D = (αu0, · · · ,αun)

ẽxp(D) = (u0, ẽxp(u1), · · · , ẽxp(un))

l̃og(P) = (v0, l̃og(q1), · · · , l̃og(qn)),

where Pi = (vi,0,qi,1, · · · ,qi,n) and Di = (ui,0,ui,1, · · · ,ui,n). These basic operations combined with type-
checking rules in Figure 8 allow us to identify coordinate-invariant operations for articulated figure motions.

6 Discussion

This work was partly motivated by our classroom teaching experiences. In computer graphics and animation
courses, geometric programming with rotations and orientations seems one of the most difficult topics for
lecturers to teach and for students to learn. The formalism presented in our work was developed as a means

12



of explaining how to manipulate rotations and orientations in a geometrically meaningful manner. Although
we have not yet attempted to assess the effectiveness of our formalism as a teaching aid, we believe that it
has helped our students understand the basic theory and practical use of unit quaternions quite easily.
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