컴퓨터 그래픽스 연구현황: 2부 융합하는 응용 기술

고형석1, 김정현2, 우은택3, 윤경현4, 이인권5, 이재회1
서울대학교1, 고려대학교2, 한국과학기술원3, 중앙대학교4, 연세대학교5

요 약

컴퓨터 그래픽스 및 관련 연구 분야는 지난 30년간 눈부신 발전을 거듭하였다. 모델링, 렌더링, 애니메이션 등 시각적 표현력을 확보하는 것을 목표로 향상한 컴퓨터 그래픽스 연구는 점차 그 범위를 확대해서 영상처리, 자연현상 시뮬레이션, 가상현실, 의료 영상, 인간-컴퓨터 상호작용, 실시간 시뮬레이션, 영화, 특수 효과 등 다양한 연구 및 응용 분야를 파생 시키며 점차 복잡한 지형도를 그리가고 있다. 이 글은 전체 2편의 연속 논문 중에서 2부에 해당하며, 컴퓨터 그래픽스의 응용 분야 중에서 국내 연구가 활발한 웃시뮬레이션, 비사실적 렌더링, 음향 시뮬레이션, 가상현실, 증강현실의 최근 연구 동향을 분석하고 정리한다.

키워드: 디지털 클로딩, 비사실적 렌더링, 음향, 가상현실, 증강현실

1. 서론

컴퓨터 그래픽스 및 관련 연구 분야는 지난 30년간 눈부신 발전을 거듭하였다. 모델링, 렌더링, 애니메이션 등 시각적 표현력을 확보하는 것을 목표로 향상한 컴퓨터 그래픽스 연구는 점차 그 범위를 확대해서 영상처리, 자연현상 시뮬레이션, 가상현실, 의료 영상, 인간-컴퓨터 상호작용, 실시간 시뮬레이션, 영화, 특수 효과 등 다양한 연구 및 응용 분야를 파생 시키며 점차 복잡한 지형도를 그리가고 있다. 국내의 연구도 꾸준히 지면을 넓히고 있으며, 몇몇 분야에서는 세계 최고 수준의 연구 결과를 매년 발표하고 있다. 이 글은 컴퓨터 그래픽스 및 관련 연구 분야 전반에 걸쳐 현재 진행 중인 연구 동향을 분석하고, 이에 몇몇 한국 컴퓨터 그래픽스 연구의 지형과 동향을 정리하고자 한다.

 컴퓨터 그래픽스의 응용 분야는 파학, 공학, 예술, 인문의 전 분야에 걸쳐 광범위하게 분포되어 있다. 따라서, 컴퓨터 그래픽스의 응용은 각 분야 별로 다른 학문 분야와의 유기적 결합이 필수적이다. 예를 들면, 웃시뮬레이션은 기존의 재료공학에서의 방법론과 섬유 산업에 의한 지식이 덧붙여져 실사 수준의 컴퓨터 시뮬레이션이 가능하게 되었다. 이 글에서는 컴퓨터 그래픽스의 수 많은 응용 연구 중에서 특히 국내에서 활발한 연구가 이루어지고 있는 웃시뮬레이션, 비사실적 렌더링, 음향 시뮬레이션, 가상현실, 증강현실 분야를 중심으로 최근 연구 동향을 조망한다.

2. 디지털 클로딩 (Digital Clothing)

인간 신체의 90% 이상을 옷이 덮고 있다. 그러므로 영화, 게임, 현실의 사설적 캐릭터를 등장시키는 경우 옷의 재현이 중요한 기술적 문제로 떠오르게 된다. 옷은 우리 몸의 단어와 시사하는 인간 생활의 가장 기본적인 요소 중 하나이며, 산업적으로도 자동차, 반도체, 조선 산업 못지않은 계선 산업을 이루고 있다. 그러므로 옷의 모델링 및 재현은 컴퓨터가 발명되기 전인 1930년대부터 많은 공학자들에 의해 연구되어 왔다.
그림 1: 가족 및 데님 소재의 시뮬레이션

물리에 기반한 옷의 시뮬레이션은 지난 10년간 광범한 발전을 이루었다. 이는 한 대의 PC로 컴퓨터 애니메이션의 결과로서 보통 기대되는 이상의 사실성을 갖는 옷의 시뮬레이션을 얻어 낼 수 있게 되었다. 이러한 발전에도 불구하고 2010년 전까지는 옷의 재현은 영화/게임의 제작에 한정되어 사용되는 기술이었다. 그러나 그 동안 꾸준히 이어진 의상관련 기술들의 추가 개발로 이 기술은 의류산업에 혁명적인 변화를 끼고 오기 직전에 왔었다. 의상 자체의 생산 내지는 의상의 애니메이션을 목적으로 컴퓨터 그래픽스 모델링, 애니메이션, 렌더링 기술을 유기적으로 결합한 것을 디지털 클로딩이라 부르는데 본 장에서는 디지털 클로딩의 현주소를 보고한다.

디지털 클로딩의 발전 정도는 드레이핑의 사실성, 표면 재질 표현의 사실성, 의상구성 CAD의포괄성 등 세 가지 측으로 파악할 수 있다.

2.1. 드레이핑의 사실성

드레이핑의 사실성은 옷의 움직임을 시뮬레이션 하는 기술의 정확도에 비례한다. 옷의 시뮬레이션은 유한요소법을 사용한 방법과 파티클 시스템을 사용한 방법 두 가지로 나눌 수 있다. 유한요소법은 연속체인 구조물을 유한 개의 요소로 분할하는 근사해법을 통해 계산을 해 나가는 수치계산방법이다. 파티클 시스템은 이와 대조적

파티클 시스템에서 옷의 움직임을 계산하는 데 사용되는 뉴턴 방정식은 다음과 같다.

\[\ddot{x} = M^{-1} \left(- \frac{\partial E}{\partial x} + F \right) \]

식에서 \(x \)는 정점의 위치, \(F \)는 외력, \(E \)는 옷감의 변형 에너지를 나타낸다. 이 방정식을 이산화한 시간 단계 별로 풀어냄으로써 매 프레임마다 옷을 구성하는 각 정점의 위치를 얻는다.
그러나 위 과정에서 실제 웹에서는 고려하지 않아도 되는 문제가 발생하게 되는데 바로 웹과 묶어, 웹과 많이 서로 교차하는 문제이다. 뉴턴 방정식은 단지 각 질점에 움직임만 계산할 뿐 옷을 이루는 질점이 움직이는 과정에서 실제 천의 두께보다 가까운 위치에 놓인다거나 심지어 서로를 둘고 지나가는 현상에 대해서는 고려하지 않기 때문이다. 따라서 컴퓨터 상에서 옷의 움직임을 재현할 때는 투과에 대한 처리가 추가적으로 필요하며 이는 시뮬레이션에 드는 시간을 늘리는 주된 요소 중 하나이다 [7,8,9,10,11]

충돌 처리 과정은 크게 두 단계로 구성되는데 첫 번째 단계로 옷의 움직임은 과정에서 충돌이 발생하였는지, 발생하더라면 그 위치가 어디인지 알아내는 검출 과정과, 두 번째 단계로 검출된 충돌 상황을 정상적인 상태로 돌려놓는 해결 과정이 그것이다. 이 중에서도 검출 단계는 기술의 신뢰성이 떨어질 경우 시뮬레이션 전체를 망치게 되므로 정확하게 작동해야 하므로 이 과정에서 많은 양의 계산과 시간을 필요로 한다. 따라서 이 작업을 얼마나 효율적으로 빠르고 정확하게 수행하느냐에 따라 시뮬레이션 기술의 사용성이 크게 좌우된다.

2.2. 표면 재질 표현의 사실성

옷의 시뮬레이션은 3차원 공간에서 이루어지지만 그 결과는 2차원 이미지를 결합한 애니메이션의 형태로 보이는데, 각 이미지를 렌더링에 의해 만들어지므로 옷의 표면 재질의 사실성이 결손 된 렌더링 기술이 옷의 재질을 얼마나 실제와 유사하게 표현해주느냐에 따라 결정되게 된다. 렌더링은 이미지를 만드는 방법에 따라 오토바이(OpenGL) 렌더링, 오토바이플러스(OpenGL+) 렌더링, 소프트웨어 렌더링 세 가지로 나눌 수 있다.

오토바이 렌더링은 아주 기본적인 그래픽스 하드웨어만을 사용하는 방법으로 컴퓨터의 사양에 크게 의존하지 않는 특성을 가지고 있다. 처리 속도도 세 가지 렌더링 방법 중 가장 빠르므로 실시간으로 옷의 모습을 화면 상에 보여주는 것이 가능하지만, 렌더링 결과의 사실성은 떨어지는 편이다.

또한 시뮬레이션 렌더링은 근본에 빠른 속도로 발전하고 있는 그래픽 처리장치, 즉 GPU 기술을 활용한 방법으로 해당 알고리즘을 수용할 수 있는 GPU를 갖춘 컴퓨터에서만 렌더링할 수 있다. 오토바이플러스 렌더링은 오토바이 방식에 비해 더 나은 수준의 결과를 내지만 화면상의 요소들을 렌더링 해줄 다양한 알고리즘이 필요하다. 예를 들어, 머리카락과 옷은 다른 알고리즘을 통해 처리하게 된다. 따라서 각각의 알고리즘들 이 균질한 수준의 사실성을 갖추지 못할 경우 하나의 이미지 안에서 표현되는 요소, 예를 들어 머리카락이나 옷 등의 렌더링 결과에 위장감이 생길 여지가 있다.

마지막으로 소프트웨어 렌더링은 이미지를 구성하는 각 픽셀의 색을 조명 상황, 표면의 재질 등 여러 요소를 모두 고려하여 계산해주는 소프트웨어를 사용하는 방법이다. 계산속도는 가장 느리지만 세 방법 중 가장 높은 사실성을 보장한다.

현재 렌더링 기술은 많은 발전을 거두어 돼 사실적인 옷의 재질을 표현하는 데 이르렀다. 하지만 그간의 기술 발전이 애니메이터 등의 영상 제작 전문가를 주 대상으로 하여 이루어졌기 때문에 실제 의상 전문가가 사용하기는 어렵다. 예를 들어, 렌더링 결과를 좌우하는 각종 매개 변수들이 옷의 표면 재질과 직접되는 섬유의 종류, 직조 패턴 등이 아닌 다른 특성 가수들로 표현되어 있어 의상 전문가가 원하는 결과물을 얻어내는 데는 많은 시행착오를 필요로 한다. 그러므로 컴퓨터 그래픽스에서 개발된 렌더링 기술이 옷을 재현하는 데 유용하게 쓰기 위해서는 렌더링 소프트웨어의 사용성 개선 및 속도 향상이 추가적으로 필요한 상황이다.

2.3. 의상구성 CAD의 포괄성
시뮬레이션 기술이 사실적인 꼴의 움직임을 계산하고 렌더링 기술이 이 결과를 시각적으로 사실적으로 화면에 그릴 수 있어도 사용자가 원하는 다양한 종류의 움직임을 만들어낼 수 있다면 그 의미가 반감될 것이다. 따라서 사실적인 꼴 재현 기술의 발전에는 움직임 디자인하는 기술, 즉 의상디자인 CAD 기술이 필수적이다. 사용하기 편한 직관적인 인터페이스를 갖추고, 다양한 종류의 움직임을 표현할 수 있도록 타입, 플러스, 그래픽 등 각각 구성 요소를 쉽게 만들 수 있으며, 기존 CAD에서 설계 사용된 디자인 파일을 복사하여 그려진 내용을 CAD 소프트웨어에 개발 되어야 한다는 것이다 [12,13].

현재 서울대학교 디지털클로딩센터에서는 그간 컴퓨터 그래픽스 분야에서 축적해온 시뮬레이션 기술과 렌더링 기술, 여기에 사용성과 표준성을 개선한 의상디자인 및 제작용 소프트웨어를 만들었다. 디지털 클로딩의 세 측이 되는 기술들을 하나로 통합한 형태로는 세계 최초이다. 디지털클로딩센터는 지난 2005년부터 각종 세미나 및 강좌, 교육프로그램을 통해 디지털 클로딩을 의상 분야의 새로운 학문 분야로 정립하는 노력을 기울이고 있다. 2011년 8월에는 국제 컴퓨터 그래픽스 학회인 뉴이슬림 시그래프(ACM SIGGRAPH)의 The Studio 프로그램에

"Creation of Your Own Digital Fashion Show"와 "Advanced Creation of Your Own Digital Fashion Show"라는 제목의 초청강연을 열어 개발된 기술을 다양한 분야의 사람들에게 소개하고 디지털 클로딩의 가능성과 소프트웨어를 널리 알리는 기회를 가졌었다.

디지털 클로딩은 컴퓨터 그래픽스 분야에서 시작되어 의류분야에 혁신적인 변화를 몰고 온 기술이다. 디지털 클로딩은 의류의 기획 및 제작 과정에서 시간과 노력을 줄여주므로써 디자이너는 하여금 좀 더 창의적인 면에 집중할 수 있게 하고 의류업계는 효율 향상을 통해 더 많은 수익을 창출하게 해 줄 기술이다. 이 기술은 또한 디지털콘텐츠 산업에서 콘텐츠의 질을 높이고 제작비를 절감시킬 수 있는 기술이다.

3. 비사실적 렌더링 기술

비사실적 렌더링(Non-Photorealistic rendering)은 1990년대 초를 통해 능동으로 기술이 개발되던 컴퓨터그래픽스 기술로, 컴퓨터그래픽스, 컴퓨터비전, 계산기학 등에 있던 기술에 걸쳐 폭넓게 연구되었다. 여러 분야의 융합된 비사실적 렌더링 기술을 몇 가지 향후 단계별로 분류하는 것은 매우 어려운 일이나, 본 장에서는 편의상, 양식화 기술, 주상화 기술, 기타 기술로 분류하여 각 기술의 최근 동향에 대해 살펴보도록 하겠다.

3.1. 양식화 기술
3.1.1. 애니메이션

한편, 비디오 매체가 대중화되고, 기존의 단일영상 기반 양식화 연구가 화상상태에 이르게 되자, 자연스럽게 비디오를 대상으로 하는 양식화 연구들이 등장하게 되었다. 이 연구들에서도 시간적 일관성을 유지하는 것과 사위도어 효과를 억제하는 것이 주요 이슈로서 다루었다.

3.1.2. 표현 양식 전이

예제에 기반한 표현 양식 전이는 컴퓨터 비전과 머신러닝으로 갈라진, 최근 주력 받고 있는 비사실적 렌더링의 한 분야로서, 입력 영상의 양식을 추어진 다른 타깃 영상의 양식으로 바꾸어 표현하는 기법이다. 예제에 따라 다양하게 양식을 표현 가능하다는 것이 이 기술의 특징이다.

텍스처의 전이를 통해 양식의 전이를 구현한 최근의 연구에서는,영상의 그래디언트 방향을 고려하여 텍스처의 전이함으로써, 타깃 영상의 회화적 양식을 효과적으로 전이할 수 있었다 (그림 6) [18]. 이와는 달리, 색상의 전이를 통해 양식의 전이를 시도한 연구들이 최근 발표되었다. [19]은 고구조(high dynamic range) 영상을 타깃으로 삼아 색상을 전이함으로써 계조를 확장하였다. 나아가, [20]는 컨셉의 전이를 시도했는데, 이들은 사용자에 의해 자연어로 명세된 컨셉을 영상에 전이하기 위해 영상간 색상 사상을 이용하였다.

3.1.3. 새로운 표현 양식

비사실적 렌더링에서는 주로 전통적 표현 양식에 대한 양식화 연구들이 주류로 이뤄졌으나, 최근에는 그 동안 다뤄지지 않았던 새로운 양식들에 대한 표현 기술들이 점차 연구되고 있다. 그 예로는, 일부 그래픽 디자이너들에 의해 수작업으로 만들어낸 아스키(ascii) 아트를 자동으로 생성하는 연구 [21], 컬러 영상을 스케일링과 라인 런럼스로 구성된 만화 양식으로 표현하는 연구 [22] 등이 있다. 전통적 양식들에 대한 양식화 연구가 이미 오랫동안 진행되었기 때문에, 도전적 이슈가 새
3.2. 추상화 기술

추상화 기술은 입력으로 주어진 대상으로부터 저주파 영역의 데이터만을 선별하여 보여줄 수 있게 대상을 단순화 하는, 최근 주목 받고 있는 기술이다. 추상화 기술에서는 어떤 정보를 유지 또는 강조 할 것인지, 어떻게 이를 처리 하는지에 관하여 다양하게 접근하고 있다. 본 절에서는 추상화 기술을 표현 목적이나 방법에 따라 기하 추상화, 이미지 추상화, 라인 드로잉으로 구분하여 각 기술들의 최근 동향을 살펴본다.

3.2.1. 기하 추상화

기하의 기하 추상화는 컴퓨터 비전 분야의 오브젝트 판별 및 컴퓨터 그래픽스의 실시간 렌더링을 목적으로 대상의 형태를 효율적으로 단순화하는 것에 대한 연구가 진행 되었던 반면, 기하의 기하 추상화는 미적 아름다음을 주거나 인간의 시각체계가 쉽게 인지 할 수 있도록 대상을 추상화하는 것에 중점을 두고 있다 [23]. 이러한 연구의 흐름은 3D 모델에 대한 추상화에서도 나타나고 있다 [24].

3.2.2. 이미지 추상화

3.2.3. 라인 드로잉

라인 드로잉은 대상을 단순한 라인만을 이용하여 표현 하였기 때문에 대상을 가장 잘 표현할 수 있는 라인을 선택하는 방법에 대한 많은 연구가 진행 되어 왔다. 기존에는 주로 3D 모델의 지오메트리(geometry)로부터 곡률을 계산하여 라인이 그려질 위치를 계산해냈으나, 이 러한 방법은 시점의 변화에 동적으로 대응하지 못하는 단점을 갖고 있었다. 최근의 연구에서는 시점 의존적 곡률을 계산함으로써 이를 해결했다 (그림 8)[31]. 3D 모델의 지오메트리로부터 곡률을 계산하는 것은 높은 비용의 연산이다. 따라서 변형되는 모델에 대해서는 미리 곡률을 계산해 둘 수 있기 때문에 실시간 라인 드로잉이
그림 9: 형태와 디테일을 명확하게 전달하는 과장된 채이팅 기술

어렵다. 최근의 연구들에서는 3D 모델의 곡률을 실제로
으로 구하는 새로운 방법을 제시함으로써 이에 대한 해
법을 보여주었다 [14,32]. 그 밖에, 추상화된 채이팅과
라인 드로잉을 결합한 연구가 많이 양식화에 대한 시도
가 있었고 [33]. 예술가들의 라인 드로잉 그림과 라인
드로잉 알고리즘들의 결과를 비교 분석한 연구가 있
다 [34].

2D 기반의 라인 드로잉에서는 기존의 에지 검출 기법
들이 연속된 에지를 생성하는데 한계가 있었기 때문에
이미지의 방향성을 고려하여 일관된 라인을 생성하는
연구가 진행되었다 [35]. 최근에는 라인 드로잉 이미지
를 만들어 가는데 방향, 순서, 위치 등의 정보를 기반으
로 우선순위를 결정하여, 실제 화가들의 그리는 순서와
유사한 순서로, 라인드로잉 결과를 표현하는 연구가 발
표 되기도 하였다 [36].

3.3. 기타 비사실적 렌더링 기술

3.3.1. 인간 인지력

위에 소개된 연구들과는 달리, 인간의 인지기호를 고려
한 연구들이 활발히 진행되고 있다. 인간은 인지할 수
있으나 컴퓨터는 식별할 수 없는 영상을 생성하는 기술
이 등장하였으며 [37], 영상 내에 임의의 영상을 숨기는
기술이 소개되었다 [38]. 이와 같은 기술들은 인간과 컴
퓨터의 인지 능력의 차이를 이용하여, 차세대

CAPTCHA(인간/컴퓨터 구분 테스트)로 활용될 수 있음
을 보여주었다.

이외는 반대로, 인간의 인지적 기능을 분석하고, 이를
활용함으로써, 보다 정확한 상태로 전달하는 렌더링 방법들
이 등장했다. 인간의 시각 체계가 조명 방향의 전력적
일관성 보다는 지역적 대비에 더 민감하다는 것을 이용
해, 가상의 지역 막을 사용함으로써 3D 오브젝트의
채이팅을 과장하고, 그 형태와 디테일을 명확하게 전달
하는 연구가 등장했다 [39]. 지역적 대비에 민감
한 인간 시각 체계의 특성은 깊이 전후 관계가 모호한
영상을 향상시키는 데에도 사용된다. 이를 위해, 깊이
비파에 대해 연상 마스킹 연산을 수행하여, 깊이 차이가
있는 영상의 지역적 대비를 증가시키는 방법이 제안되
었다 [40]. 이렇게 연산은 3D 셀프레스에 적용되도록 확장되
어 [41], 황상된 3차원 장면의 렌더링을 가능케 했다.

3.3.2. 검증 및 평가

오랫동안 많은 비사실적 렌더링 연구에서는 결과의 검
증 및 평가 없이, 결과 영상의 진열을 통해 결과의 우수
성 또는 차별성이 독자의 눈에 의해 구별되거나, 기기
가 다르다. 하지만 최근, 결과 영상들 사이의 차이를 식
별하고, 이것이 어떠한 의미를 갖는 지를 분석하는 연구
들은 나타나기 시작했다. 이러한 연구는 궁극적으로
비사실적 렌더링이 실제 예술가가 작품 또는 기술을 보
다 사실적으로 흘러 낀 수 있도록 향상시키는 것을 목
표로 하며, 이를 위해 전통적인 정량적 평가 방법들을
도입한다. 최근의 연구에서 사용된 평가 방법들은 다음
과 같다. 첫 번째 방법은 동일한 3D 오브젝트에 대해
예술가가 직접 그린 영상들과 여러 종류의 비사실적 렌
더링 기술들로 렌더링한 영상을 블라인드 테스트하여
피실험자로 하여금 구분한다 [42]. 두 번째 방법은
수용자 실험으로 렌더링된 결과 영상의 스티브 본포를 영
상처리 및 분석 기술을 이용해 실제 작품의 것과 비교
분석한다 [43]. 세 번째 방법은 3D 오브젝트에 대한 다
양한 라인드로잉 알고리즘들의 결과 영상에 대해 관찰자
가 인지하는 표면 노말 방향의 오차를 측정하여 라인드
로잉 방법의 성능을 평가한다 [44].
지금까지 우리는 비사실적 렌더링의 각 영역별로 최근의 연구 동향 및 이슈들에 대해 살펴보았다. 이 것을 간단히 정리하자면, 크게 세 가지 방향으로 연구가 진행되고 있는 것으로 볼 수 있다. 첫 번째는 실시간 처리 및 애니메이션으로의 확장이다. 급속히 발전한 하드웨어 가속 기술과, 비디오 매체의 대중화는 이와 같은 새로운 연구 방향을 제시하게 되었다. 두 번째는 인간의 인지기반으로 한 접근 방법이다. 2000년대 후반 들어, 인간의 인지 과정에 대한 분석을 기반으로 하는 연구들이 비사실적 렌더링의 영역으로 새롭게 등장하기 시작했음을 확인할 수 있었다. 세 번째는 결과의 검증 및 평가에 대한 것이다. 그동안 비사실적 렌더링에서 도전적인 과제로 여겨졌던 이슈들은 최근 다양한 유저 스타디러를 통해 활발히 연구되고 있으며, 향후, 비사실적 렌더링의 정량적 평가 툴을 만드는데 크게 기여할 것으로 전망된다. 더불어 인간의 예술 활동에 대한 분석의 도구로도 비사실적 렌더링이 활용될 수 있음을 전망한다.

4. 음향

음악과 사운드는 애니메이션에서 중요한 역할을 한다. 음악과 사운드는 애니메이션에 실제감, 공간감 등을 더할 뿐만 아니라 눈에 보이지 않는 부가적인 정보를 제공하기도 한다. 따라서 애니메이션, 영화, 게임 등에서 사운드 효과와 배경음악의 생성 및 동기화 등이 꾸준히 연구되어 오고 있다. 본 장에서는 컴퓨터 그래픽스 분야에서 소개된 사운드/음악 관련 연구들을 소개한다.

애니메이션과 사운드/음악은 본질적으로 시간 측을 이용한다는 공통점이 있지만, 사람의 인식 능력 및 각 요소의 본질적인 차이가 존재함으로 두 요소 간의 동기화가 중요한 문제이다. 따라서 대부분의 연구가 애니메이션 및 사운드/음악의 생성뿐 아니라 둘 간의 정확하면서도 효율적인 동기화를 중요시 여기며 진행하고 있다. 그래픽스 분야에서 발전된 모델링 및 렌더링의 효율성을 높이는 연구들도 다양하게 사운드 연구에 적용되고 있으며, 최근에는 두 요소간의 인식적인 모델도 활용되는 등, 앞으로도 그래픽스와 사운드/음악 분야는 꾸준하게 발전하고 있다.

4.1. 사운드 모델링 및 렌더링

사운드 효과의 연구는 사운드 모델링과 사운드 렌더링 두 부분으로 구분될 수 있다. 먼저 사운드 모델링은 사운드가 발생하는 물리 법칙을 이용하여 실제 소리를 만들고 이를 애니메이션과 동기화 시키는 연구이다. 현재까지 가장 많은 연구가 이루어진 분야는 게임 등에서 자주 사용될 수 있는 화성 사운드이다. 이 사운드의 모델링은 선형적인 모델링 방법이 가장 기본이 되고 있다 [45, 46, 47]. 현재는 사운드의 품질을 높이기 위하여 비선형적인 음직임으로 발생하는 사운드 효과를 모델링하는 연구가 이루어지고 있다 [48, 49, 50, 51]. 종단 사운드 외에 다른 사운드 연구에는 물체와 공기가 충돌할 때 일어나는 소리를 공기역학을 이용하여 모델링한 연구 [52] 및 물체가 보일 때 나는 소리를 모델링 하는 연구 [53, 54] 등이 있다. 또한 물방울의 음직임을 이용하여 물 등과의 액체의 소리를 모델링한 연구들이 있다 [55, 56].

모델링 된 사운드는 사용자의 위치에 따라서 다르게 들려야 한다. 이를 연구하는 사운드 렌더링 분야는 크게 두 가지 접근 방식의 연구가 이루어지고 있다. 기하학적인 접근 방법은 그래픽스의 레이 트레이싱과 비슷하게 사운드의 음직임을 직선으로 모델링하여 공간에 따른 이의 전파 과정을 연구한다. 다양한 사운드 전파 과정을 나타내기 위한 연구가 진행되었으며, 초기의 단순 전달 및 반사에서 [57] 발전하여 확산 및 회절 [58, 59, 60] 효과 등이 연구되었다. 사람의 청각 인지 모델을 이용하여 사운드 소스를 줄여 효율을 높이는 연구도 꾸준히 진행되고 있다 [61, 62, 63]. 반면 수치적인 접근방법은 실제 음향학 분야에서 연구된 공식을 이용하여 사운드의 복잡한 음직임을 계산하는 것으로, 계산 시간이 많이 걸리기 때문에 대부분 전처리 과정에서 계산을 한 후, 이를 효율적으로 실행시간에 이용하는 연구가 대부분이다. 이 연구 분야 또한 더욱 다양한 공식을 이용하여 다양한 사운드 렌더링 효과를 생성하는 것과 계산 시간을 줄이는 방법을 제안하는 연구가 주를 이루고 있다 [49, 55, 64].
4.2. 스피치 및 캐릭터 애니메이션

스피치 애니메이션에서는 기본적으로 스피치 사운드와 동기화가 이루어지게 된다. 이를 위해서는 사운드가 음소 단위로 구분되어야 하고 이 음소가 어떤 담연지 인식이 되어야 한다. 필터링을 통한 음소 구분 방법이 오랫동안 연구되고 있으며 [65], 이를 선행 예측 방법 [66] 및 인공지능 방법 [67] 등을 이용하여 인식을 하게 된다. 최근에는 공개되어 있는 라이브러리 등이 많이 이용된다 [68]. 스피치 애니메이션 외에도, 옷든 소리를 이용하여 옷을 때 몸의 움직임을 애니메이션하는 연구도 발표하였다 [69].

캐릭터 애니메이션과 배경음악을 동기화 하는 것은 주로 촬영을 추는 애니메이션을 만들 때 이용된다. 사람을 시각적인 요소의 변화보다 청각적인 요소의 변화에 더욱 민감하기로, 대부분의 연구가 음악에 따라 캐릭터 움직임 변화시키는 방식으로 연구가 이루어지고 있다 [70,71,72,73]. 이 연구들은 대부분 사운드와 모션에서 시간과 관련된 특징점을 추출하여 이 특징점을 동기화 시키는 방법을 사용한다. 모션에 따라서 음악을 변화시키는 것은 인터랙티브한 음악 생성 등에서 활용되고 있으며, 제한된 범위 내에서 음악과 모션을 모두 수정하여 동기화를 이루고자 하는 연구도 수행되었다 [74]. 이 연구에서는 또한 모션에 따라서 새롭게 배경음악을 생성하는 방법도 제안하고 있다.

5. 가상현실

가상현실의 (Virtual Reality, VR) 역사는 60대 중반 I. Sutherland의 WOW 시스템을 시초로 오랜 역사를 지니고 있지만, 본격적인 연구는 90년대 초에 시작했다고 해도 과언이 아니다. 90년대에의 가상현실 연구는 (첫 10년) 주로 시스템/플랫폼 개발 이나 3D 사용자 인터페이스에 초점이 두어졌다. 이는 당시 가상현실 시스템을 구성할 수 있는 총체적인 개선량과 그래픽스 기능을 지원하는 컴퓨터, 센서, 소프트웨어, 디코러레이 시스템이 대학 연구실에서도 시도 할 수 있을 만큼 가격이 낮아지고 보급이 가능해졌기 때문이었다. 따라서 우선 다양한 시스템을 구현 하고 가상현실의 가능성을 대로 하고, 또한 기타 필요한 기본 플랫폼 기술 개발에 연구가 치중 되었다.

그 이후, 2000년대에 들어오면서 좀 더 이 분야에서의 핵심적인 바탕을 쌓기 위하여 가상현실의 핵심 개념인 실제감 저술 혹은 실제감에 필요한 요소 및 상호 작용 및 시스템 사용성에 대한 연구가 많이 발표 되었다. 그 핵심적인 바탕이 어느 정도 이루어 지면서, 본격적 가상현실 연구가 20여 년이 지나고 있는 이 시점에서 앞으로의 연구 방향을 잡아 보는 것도 의미 있을 것이다. 본 장에서는 가상현실 영역에서 가장 그 전문성을 인정 받고 있는 학회에서 지난 3년간 발표 된 논문을 중심으로 가상현실 연구의 최근 동향을 정리 하여 보았다.

5.1. 손가락 기반 정밀 상호 작용

가상현실 시스템은 대부분 3D 공간 기반으로 하고 있고, 주로 상호 작용은 손 꼬일한 위치/포즈 센서로 직간접 선택 및 조작에 의존 하여 왔다. 손가락의 움직임을 이용한 센서로의 상호 작용은 손가락의 움직임을 제대로 추적 할 수 있는 센서나 관련 알고리즘 개발이 어려운 문제로 남아 있었다. 최근, 이 분야에서 많은 진전이 이루어지고 있으며 가까운 거리에서 상호 작용 할 때 좀 더 정밀 하고 인간의 자기신경 감각의 자극을 통하 여 실제감을 더욱 높일 수 있을 것으로 보인다.

독일 폭스바겐의 Moehring과 바우하우스 대학 Froehlich 박사 팀은 비교적 작용이 쉽고 편하며 또한 정확성이 뛰어난 핀치(pinch) 측정에 기반한 손가락 움직임 센서를 개발하고 이를 자동차 가상 황폐에 활용하고 또한 사용성 실험을 통하여 가상공간에서의 정밀 상호 작용의 가능성을 보여주었다 [75]. 같은 독일의 Fraunhofer 연구소의 Broll 박사 팀은 [76] 키넥트(kitectik) 등의 적이 센서를 이용하여 손가락의 포즈를 알아내고 손가락 기반의 제스처 인식 시스템을 개 발 하였다. 대개 키넥트 같은 적이 센서의 해상도는 손가락을 추적하기에는 부족한 것으로 알려져 있다.

5.2. 전신 상호 작용
앞서 언급한 바와 같이, 한 두 개의 센싱 위치에 의존 하던 상호 작용이 한편으로 좀 더 정밀해지는 반면, 다 른 한편으로는 온 몸을 활용하는 상호 작용을 통하여 좀 더 실험대나 사용자 경험을 제고 하고자 하는 상 호 작용 연구의 추세가 두드러지고 있기도 하다.

독일 헤르스텍 대학의 Hirichs 박사 팀은 널리 가상공간 을 졸은 상호 작용 공간에서 움직이면서 최대한 같은 거리감과 길이감을 느끼며 감상 할 수 있도록 방법 론을 제시 하였다 [77]. 이때 리디렉션(redirection)이라 는 개념을 사용하고 있는데, 이는 사용자가 실제 공간에 서 방향을 바꾸는 것에 대한 낮은 인지도를 이용하여 더 큰 가상공간에서의 움직임을 자연스럽게 느끼도록 하는 방법이다. Hirichs 팀 이외에도 최근 리디렉티드 내비게이션(Redirected Navigation) 관련 논문이 매우 많 이 발표 되고 있고 [78,79,80,81], 이는 종전의 제자리 걸기

(walk-in-place) 형태의 내비게이션 상호 작용이 진화 하고 있을음을 반증 하고 있다.

리디렉티드 내비게이션 이외에도 전신을 활용하는 상 호 작용 방법으로 그라운디드 아이소메트릭(grounded isometric) 상호 작용을 통한 방법이나 [82], 사용자의 몸 을 조이스틱에 비유 한 조이먼(joymain) 인터페이스에 대한 연구가 최근 발표 되었다 [83]. 이러한 전신 인터페이스는 정밀하고 작은 스케일의 상호 작용과 더불어 앞으로 가상공간에서의 사용자 경험을 배가 할 수 있을 것으로 생각 된다.

5.3. 후각 인터페이스

지난 수 십 년 동안 가상현실 연구가 진행 되어 왔으나 주로 3감, 즉 시각, 청각, 촉각에 기반한 연구가 진행 되어 왔고, 후각 인터페이스에 대한 연구는 매우 지지 부진 해 온 것이 사실이다. 그러나 후각은 우리 감정 변 화에 매우 큰 영향을 미치는 것으로 알려져 있어 가상 경험이 큰 공헌을 할 수 있다. 후각은 시각에서의 3원색 과 같은 합성을 위한 기본 요소가 아닌 다양한 내재 효 과를 생성하기가 어려웠다. 또한, 향기 따라서의 후각 효 과를 특정 개인 사용자에게만 전달 한다든지, 뺀진 향 기를 다시 증폭해 하는 방법 또한 어려운 문제로 남아 있었다. 최근, 기본 3감에 대한 연구의 기반이 어느 정 도 마련 되면서, 후각 인터페이스에 대한 연구가 다시 활발 해 지기 시작 하였다.

후각 인터페이스를 오랫동안 연구 하여 온 동경공대 의 나카모토(Nakamoto) 교수 팀은 최근 10,000여개의 화학물질에서 비음수 행렬 분해(non-negative matrix factorization)을 통하여 빠르게 32-50여개의 기저(basis) 후각 요소만을 이용하여 104여개의 내재 효과를 합성 하는 방법을 개발 하였다 [84]. 동경대학의 히로세
(Hirose) 교수 팀은 후각 및 후각의 음합 효과에 의하여 비교적 적은 수의 범주형 후각 요소를 가지고 다양한 내재 효과를 생성 할 수 있게 하였고, 이러한 범주 기반 한 후각 맵(olfactory sensory map)을 구성 하였다 [85]. Matsukura 등은 다각각 필드 디스플레이(multi-sensorial field display)라는 장치를 고안 하여, 3차원 상호 작용 공 간에서의 고명한 향.Sort 내재의 분포를 종전에 비해 좀 더 효과적으로 제어 할 수 있게 하였다 [86]. 후각 효과 의 생성이나 전달은 이렇게 다양한 접근 방법인 연구 되고 있는 반면 아직 후각 정보를 획득하여 그대로 다 시 재생 하는 방법은 아직 이것은 할 성과가 없는 실정 이다.

5.4. 인지적 /생실리학적 접근 방향

가상현실은 본래 인간의 인지적 혹은 생실리학적 착각 이 기반 하고 있다. 예를 들어, 백선vection을 통하여 사용자는 얻지 않으면서도 움직이는 듯한 가상 내비게 이선(virtual navigation)을 경험 할 수 있다. 또한 가상현 실 컨텐츠가 충실 하기 위해서는 많은 디스플레이 기기 와 센서를 사용하게 되는데 이러한 장치들이 가상 경험이 생성할 수 있게 하기 위해서는 중요하다. 이때,
인간의 착각 현상 및 멀티모달 융합 현상을 잘 활용하면, 경제적이면서도 많은 장치를 빌리지 않고도 효과적으로 가상경험을 창출할 수도 있다. 그 가장 혼란 예가 간단한 진동 자극을 시각 피드백과 융합 하여 역갑을 제시하는 방법일 것이다 [87,88]. 앞서 언급한 린디렉티드 내비게이션이나 시/시각 융합에 의거한 방법들은 인간의 인지적 착각을 기반으로 하는 것은 마찬가지이다. 최근 IEEE 가상현실 학회에서는 지각적 착각(perceptual illusion)에 기반한 가상현실 기술에 대한 워크샵이 생겨나 이 분야의 연구가 활발해지고 있고, 본 학회에서도 꾸준히 관련 연구가 보고되고 있다.

예를 들면, 가장 현명적인 착각 현상 중에는 축각에 관한 한 '살아있는 (Salting)'과 'fcnneling'이 있다. 이들은 몇 개의 진동기를 가지고 사용자의 피부에 적절히 자극을 주었을 때, 진동기 없는 곳에서도 환상 감각을 느끼게 하는 방법들인데 [89,90], 최근 사용자의 피부가 아닌 외부 객체 혹은 가상 객체를 통해서도 비슷한 효과가 있음을 밝혀지고 있다 [91]. 런던대학교의 Steed 교수팀이 최근 가상현실을 통해서도 왕이 등장된 사용자가 가상의 꼭대에 대한 느낌을 얻을 수 있는 비슷한 연구를 발표하였다 [92]. 이러한 이론은 범위로하여 가상/증강 현실을 위한 간편한 축각 기반 피드백 장치의 개발이 가능할 것을 보인다. 가상 축각 피드백 장치는 자극에 따라 가상의 환상을 창출할 수 있고, 이러한 실험은 가상/증강 현실을 위한 간편한 축각 기반 피드백 장치의 개발이 가능할 것을 보인다. 가상 축각 피드백 장치는 자극에 따라 가상의 환상을 창출할 수 있고, 이러한 실험은 가상/증강 현실을 위한 간편한 축각 기반 피드백 장치의 개발이 가능할 것을 보인다. 가상 축각 피드백 장치는 자극에 따라 가상의 환상을 창출할 수 있고, 이러한 실험은 가상/증강 현실을 위한 간편한 축각 기반 피드백 장치의 개발이 가능할 것을 보인다.
실시간 상호작용, 3차원 정형의 특성을 가지고 있으며, 착용형 컴퓨팅은 컴퓨팅 시스템 컴퓨포넌트의 소형화를 기반으로 착용 가능하며도 거의 보이지 않는 형태를 사용자가 몸에 지니고 개인 용도로 자유롭게 상호작용 할 수 있는 개념을 말한다 [97]. 메타버스는 사람 형태의 캐릭터가 시간을 보고하고, 일하고 생활하는 3차원 세계를 나타내고 3D3C(3D World, Communities, Creativity, Commerce) 특성으로도 표현된다.

최근에 도래한 유사한 개념으로는 아나에어 증강(Anywhere Augmentation), 크로스 현실(Cross Reality), 사이버 물리 시스템(cyber physical system), 증강 현실 2.0등이 있다. 아나에어 증강은 T. Hollerer가 제시한 개념으로 특정 위치 기반의 컴퓨팅 서비스를 실제 공간과 연결시킴으로 상황이 위치에 상관없이 사용 가능하게 하는 증강 현실 기술을 지칭하며 [98], 크로스 현실은 센서 네트워크를 통해 실제 세계의 정보를 가상 세계로 전달하고, 가상 참여자의 상호작용을 실제 세계의 디스플레이와 작동기를 통해 반영되는 유플러스 혼합 현실 항장을 말한다 [99]. 사이버 물리 시스템은 다양한 개인간의 직접적 상호작용과 양자간의 반영 및 영향을 주거나 또는 여러 부분 공간(Cyber, Physical, Socio, Menta)을 통해 각 부분 공간을 생성하고 전화시키는 복잡한 다차원의 공간을 나타낸다 [100]. 증강 현실 2.0은 웹 2.0의 특성을 반영한 증강 현실로서 다음의 특성을 지니고 있다 [101]. 대규모 사용자와 데이터를 지원하고, 로컬 데이터와 원격 데이터의 경계가 불분명해지며, 로컬 응용에서 모들의 다운로드가 투명하게 진행되고, 특정 위치에서 증강 현실 콘텐츠 제공이 가능하며, 마지막으로 증강 현실 콘텐츠와 웹 서비스 콘텐츠간의 매쉬업이 가능하다는 특성을 가진다.

6.1. 유비쿼터스 가상현실

유비쿼터스 가상현실은 미래의 컴퓨팅 환경의 변화에 필요한 기반 구조를 제안하는 패러다임이다. 초기의 유비쿼터스 가상현실은 가상 현실과 유비쿼터스 컴퓨팅을 결합하는 새로운 패러다임의 필요성으로부터 시작되었으며, 이 때, 이 두 공간을 연결하기 위해서, 사용자와 환경의 맥락 정보가 핵심 요소로 활용된다 [102]. 그 후, 유비쿼터스 가상현실 환경을 구축하기 위한 개념으로 가상현실과 유비쿼터스 컴퓨팅 기반 구조를 응용하여 가상현실을 우리의 일상 생활에 편제하게 하는 것으로 정의되었다 [103,104].

앞으로의 유비쿼터스 가상현실은 현실 공간과 그에 대응되는 미러 월드(mirror world)를 센서와 부가적인 정보를 이용하여 3차원으로 연결하고, 두 공간에 부족한 정보를 증강하여 양방향 상호 작용을 가능하게 하는 것으로 현실과 가상의 연결, COI(context of interest) 증강, 양방향 상호 작용 같은 특징을 포함하는 기술로 정의할 수 있다.

6.2. 현실과 가상의 연결 (3D Link)

 현실세계와 이에 대응되는 가상세계를 연동하고 양방향으로 증강 콘텐츠를 공유하기 위해서는 센서를 통해 수집된 정보 또는 해석된 맥락정보(context)를 통해 서로 연결되어야 한다. 현실 공간의 변화는 각종 센서를 통해 추적되고 처리되어 맥락정보의 형태로 연결된 가상공간의 가상 객체에 제공되고, 동시에 가상공간의 맥락정보는 현실공간의 객체(공간/장소, 객체, 모바일 단말기 등)에 제공되어 가상과 현실은 이에 의해 없이 연동되고 상호 영향을 미친다. 기존에는 가상 현실, 증강 현실, 모바일, 착용형, 유비쿼터스 컴퓨팅에 이르기까지 다양한 컴퓨팅 개념들이 소개되어 왔지만 각각 독자적인 영역에서 필요한 기술들이 단편적으로 연구되고 있다. 따라서 사용자를 중심으로 통합적인 관점에서 사용자-콘텐츠-환경간의 자연스러운 상호작용을 고려한 컴퓨팅의 개념이나

그림 13: 유비쿼터스 가상현실 관련 연구 관계도
이를 지원하는 프레임워크는 거의 없다. UCAM은 모바일/착용형 컴퓨터를 사용자의 측면에서, 가상 현실과 증강 현실을 콘텐츠의 측면에서, 그리고 유비쿼터스 컴퓨팅을 환경적인 측면에서 각각 고려하여 이들간의 이점이 없는 상호작용을 일관되 고 통합적인 관점에서 제공한다 [105]. 일관되고 통합적인 관점을 개발자에게 제공하기 위해서 사용자, 콘텐츠, 그리고 환경을 각각 센서와 서비스로 모델링할 뿐만 아니라 이들 사이에 발생되는 모든 상호작용과 관련된 정보들로 사용자 중심의 맥락으로 모델링한다.

그러나 유비쿼터스 가상 현실에서 의미하는 현실과 가상의 연결을 실현하기 위해서는 이와 같은 센서를 이용한 맥락정보 형태로의 연결 외에도 현실 공간과 미러 월드의 공간을 정합하는 기술이 필요하다. 이에 대한 일환으로 진행된 연구로 김기영은 [106] 유비쿼터스 컴퓨팅과 혼합 현실이 혼합된 환경에서 멀티미디어 콘텐츠의 표현 방법을 제안하였고, 김혜진은 [107] 모바일 폰 상에서 실내 공간의 정합방법을 제안하였다.

6.3. COI(context of interest) 증강

 현실 공간에 가상 정보를 연점시켜 보여주는 것 이상으로 가상 공간과 연동하는 데서 Lipton은 [115] 두 공간을 유비쿼터스 센서/액추레이터 네트워크로 연동하 여 한 공간에서 일어나는 이벤트를 다른 공간에서 가시화하는 듀얼 현실(double reality) 또는 크로스 현실(cross reality) 개념을 제안하였다. 앞서 언급한 가상 공간은 세 컨트 라이프와 같이 현실 공간을 참조했지만 현실 공간에 대응하는 것이 아니라 별개로 존재하는 공간이다. 이와 달리 현실을 디지털화하여 대응되도록 만들어진 공간이 미러 월드이고 [116], 구글 거리 뷰(Google street view)가 일례이다 [117]. 이와 같은 연구들은 두 공간에 부족한 정보를 증강하는 개념인 COI증강으로 나아가는 연구의 방향을 보여주고 있다.

6.4. 양방향 상호작용 (Bidirectional UI)

유비쿼터스 가상 현실 공간에서 서로 연점된 현실과 가상, 두 공간에서 양방향으로 반응하는 상호 작용형 증강 콘텐츠와 사용자 인터페이스를 통해 상호작용 경험을 제공하고 항상시키는 것이 중요하다. 이러한 사용자 인터페이스는 사용자가 필요한 요소를 쉽게 찾아 사용하도록 직관성과 명확하게 의도한 결과를 쉽게 얻어낼 수 있도록 하는 편의성을 포함해야 한다. 따라서 증강 현실 사용자 인터페이스는 다양한 센서로 개별 사용자의 사용패턴을 파악할 뿐만 아니라 제어 동작, 음성, 터치 등을 지원하여 증강 콘텐츠를 보다 자연스러운 실시간 양방향 상호작용을 가능하게 하여야 한다.

 현실 공간에 산재되어 있는 다양하고 복잡한 서비스/콘텐츠 사이에서 사용자가 원하는 항목에 빠르게 접근 하는 방법을 제공하는 것은 사용자의 시스템 친숙성을 높이는 데 중요한 요소이다. 사용자의 눈을 대신하는 모바일 디바이스에 장착된 카메라를 통해 대상 객체를 바라보는 것만으로 시스템은 해당 객체에 접근할 수 있는
인터페이스를 즉시 제공해준다 [118]. 사용자의 의도를 파악하는 인터페이스의 예로, J. Lepinski는 다양한 현실 객체를 제어할 수 있는 중앙현실 기반의 동적 컨텐츠 메뉴얼 스틱 애니웨어 컴퓨터(stick-anywhere computer)를 제안하였다 [119]. 이 메뉴는 물리적 태그형태에 시각정보가 투영되는 형태로 제공되며, 특정 객체에 근접할 경우 해당 객체를 제어할 수 있는 메뉴로 변형된다. 어포던스(affordance) 지원 사용자 인터페이스는 대부분의 단계별 과정을 포함하는 응용 프로그램 사용을 돕는 데 중앙현실 기술이 활용되는 인터페이스를 말한다 [120].

그림 159: 중앙현실 기반 사용자 인터페이스. 왼쪽 : NVUI [118], 오른쪽 : 어포던스 UI [120]

6. 현황과 전망

지금까지 살펴 본 바에 따르면 세부분야에 상관없이 공통적으로 나타나는 특징들을 발견할 수 있다. 먼저, 실제 세상에서 관찰 혹은 측정 할 수 있는 기하학적 형상, 영상, 반사율, 옷감의 물성, 음향, 음성, 압력, 자세, 공간의 위치 등 다양한 시각/청각/각각/작각 데이터를 응용 분야에 적극 활용하고 있다. 이와 연관되어, 다양한 입력/조정/판찰 하드웨어 장치의 개발이 지속적으로 이루어지고 있고 이러한 움직임은 컴퓨터 그래픽스 연구가 보다 현실의 물리적 세계에 관심을 기울이고 더 가까워 지고자 노력하고 있음을 보여준다. 또한, 공간 및 과학분야는 물론, 심리학, 의지과학, 생리학, 생체역학, 의류학 등 다양한 학문 분야와의 통섭을 통해 지속적으로 컴퓨터 그래픽스 응용 분야가 넓어지고 있다.

감사의 글

자료 정리와 논문 편집에 도움을 준 강동환(중앙대학교), 김혜진(광주과학기술원), 박노영(서울대학교), 하태진(한국과학기술원)에게 감사를 전합니다. 이 연구는 교육과학기술부의 재원으로 한국연구재단(No. 2011-0018616, M1AXA003-2011-0028361, No. 2011-0018340), 문화체육관광부/KOCCA의 CT R&D 지원사업, 교육과학기술부의 국가지정연구실사업, 서울시 R&D 프로그램(10581), MKE/MCST/IITA IT R&D 프로그램(IITA110009020126 00010000100100), 지식경제부의 지원을 받는 정보통신분야 주관 및 인증지원사업의 지원을 받아 수행되었습니다.

참고문헌

[49] J. N. Chadwick, S. S. An, and D. L. James, “Harmonic shells: a practical nonlinear sound model for near-

[88] Y. Mizukami and H. Sawada, "Tactile Information Transmission by Apparent Movement Phenomenon"

