
EUROGRAPHICS 2016 / J. Jorge and M. Lin
(Guest Editors)

Volume 35 (2016), Number 2

Motion Grammars for Character Animation

Kyunglyul Hyun, Kyungho Lee, and Jehee Lee

Seoul National University, Republic of Korea

Figure 1: Our motion grammar reconstructs a structurally-valid 3D animated scene from a sketch of the basketball tactics board.

Abstract

The behavioral structure of human movements is imposed by multiple sources, such as rules, regulations, choreography, habits,
and emotion. Our goal is to identify the behavioral structure in a specific application domain and create a novel sequence
of movements that abide by structure-building rules. To do so, we exploit the ideas from formal language, such as rewriting
rules and grammar parsing, and adapted those ideas to synthesize the three-dimensional animation of multiple characters.
The structured motion synthesis using motion grammars is formulated in two layers. The upper layer is a symbolic description
that relates the semantics of each individual’s movements and the interaction among them. The lower layer provides spatial
and temporal contexts to the animation. Our multi-level MCMC (Markov Chain Monte Carlo) algorithm deals with the syntax,
semantics, and spatiotemporal context of human motion to produce highly-structured, animated scenes. The power and effec-
tiveness of motion grammars are demonstrated in animating basketball games from drawings on a tactic board. Our system
allows the user to position players and draw out tactical plans, which are animated automatically in virtual environments with
three-dimensional, full-body characters.

1. Introduction

Natural human movements are often strongly structured. Behav-
ioral structures may be imposed explicitly by rules, regulations, and
choreography. Structures may arise implicitly from habits, cultural
heritage, and emotion. For example, the rules of basketball dictate
how many steps the player can take while holding the ball and pre-
vent players from violations such as double dribbling. Basketball
rules and regulations render highly-constrained structures of play-
ers’ movements. Dance choreography is another example of struc-
tured human movements. Each category of dances has established
the conventions of its form, motion, and rhythm. Dance choreogra-

phers dictate motion and form in a highly structured manner based
on such conventions.

Motion capture technology is popular in computer graphics and
thus large databases of high-quality human motion data are readily
available on the web. A common goal of data-driven animation re-
search is to animate computer-generated characters by using a col-
lection of canned motion data. Efforts for achieving this goal have
developed a toolbox of data-driven techniques that range from low-
level data manipulation to higher-level planning of a sequence of
actions in virtual environments. Understanding the syntax and se-
mantics of human movements would allow even higher-level con-

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.



Kyunglyul Hyun, Kyungho Lee, and Jehee Lee / Motion Grammars for Character Animation

trol over the motion of animated characters and make it look plau-
sible.

Our goal is to identify the behavioral structure of human move-
ments and create a novel sequence of movements that abide by
structure-building rules. To do so, we exploit formal language tech-
nologies, such as rewriting rules and grammar parsing, developed
in computer science and computational linguistics. The underly-
ing assumption is that behavioral structures can largely be for-
mulated as context-free grammars. In graphics applications, hu-
man motion data have often been stored and maintained in motion
graphs [LCR⇤02, KGP02], which are equivalent to finite state ma-
chines and regular grammars in terms of their expressive power.
The motion graph maintains a collection of motion fragments and
encodes the transitioning possibilities among motion fragments.
Transitioning through the graph generates a sequence of character’s
actions. Context-free grammars are more expressive than regular
grammars, so the use of context-free grammars allow us to uncover
richer hierarchical structures, regularities, interactions, and patterns
that could not be expressed in motion graphs. Motion grammars
can be easily incorporated into existing animation systems that are
equipped with motion graphs or finite state machines of character’s
actions.

The theory of formal language does not generalize easily to deal
with human movements. Human motion data are high-dimensional,
continuous, and time-series, whereas a formal language is a string
of discrete symbols. Human movements take place at specific spa-
tial locations and specific time instances. The spatial and temporal
contexts do not exist in formal languages. Our motion grammar is
a set of context-free rewriting rules of quantized motion symbols
and each rule is annotated with semantic context that may eval-
uate and trigger actions. We formulate a multi-character motion
synthesis problem in two layers. The structure layer is a symbolic,
tree-based description that relates the structure of each individual’s
movements and the interaction among them. The semantic layer
provides spatial and temporal contexts to the animated scene and
generates full-body animation. Our multi-level MCMC (Markov
Chain Monte Carlo) algorithm deals with the syntax, semantics,
and spatiotemporal context of human motion to produce plausible,
highly-structured, animated scenes.

To demonstrate the power of motion grammars, we built an ani-
mation system that produces the animation of basketball plays from
drawings on a tactics board. Most basketball coaches use clipboards
to position players and draw out tactical plans. Our system recon-
structs the full-body motion of multiple players dribbling, passing,
and shooting balls. Motion grammars are used to describe basket-
ball regulations and the behavioral patterns of offensive and defen-
sive players.

2. Related Work

Motion capture is a major source of realism in modern character an-
imation. Data-driven approaches commonly segment motion cap-
ture data into short fragments and splice them in a novel sequence.
Animation techniques based on motion capture can roughly be clas-
sified into three categories. A large class of data-driven methodolo-
gies edit individual fragments subject to new requirements. There

exist another class of methodologies that focus on temporal se-
quencing and spatial alignment of motion data in space and time.
The first category of techniques tend to make smooth, continuous
changes over individual motion fragments or a family of param-
eterized motions, while the problems in the second category are
discrete and combinatorial. The last category of techniques tried to
solve both continuous editing and discrete planning simultaneously.

The continuous editing of motion is usually formulated as con-
strained optimization, which minimizes the deviation from the orig-
inal motion data subject to user-specified constraints and require-
ments. This formulation has been effective for a wide range of
problems, such as retargeting motion to new characters [Gle98],
interactive manipulation [LS99], blending a family of similar mo-
tions [RCB98], statistical modeling [MCC09,MC12], and incorpo-
rating physics-based objectives and constraints [LHP05]. The idea
has further been explored to deal with multiple interacting charac-
ters in the context of interactive manipulation [KLLT08, KHKL09,
KSKL14].

The combinatorial planning of action sequences often requires
an efficient data structure to store and search motion data. The
most popular structure is a motion graph [LCR⇤02,KGP02], which
is essentially a finite state machine encapsulating the connec-
tivity among motion fragments. The concept of motion graphs
has further been elaborated to cope with families of parameter-
ized motions [SO06]. Good segmentation and clustering of mo-
tion fragments are key ingredients of building effective motion
data structures [BSP⇤04, BCvdPP08]. Provided that such a struc-
ture is built, synthesizing novel motion sequences entails combi-
natorial searching through the connectivity among motion frag-
ments. Temporal sequencing of motion fragments has been ad-
dressed by using state-space search [LCR⇤02, KGP02, SH07],
dynamic programming [AFO03], min-max search [SKY12], and
policy learning [MP07, TLP07]. State-space search methods are
closely related to the path planning of three-dimensional char-
acters in highly-constrained and dynamically-changing environ-
ments [CKHL11, LLKP11].

Naturally, there have been efforts to integrate continuous opti-
mization and combinatorial planning into a single framework. Mo-
tion data and their connectivity can be projected into a single con-
tinuous configuration space via dimensionality reduction [SL06]
and can be retrieved from the configuration space by using mul-
tivariate regression [LWB⇤10]. Combinatorial planning problems
can be reformulated as continuous optimization in the projected
space. Alternatively, careful design of user interfaces can allow two
heterogeneous types (continuous and discrete) operations to occur
seamlessly in interactive manipulation of motion data [KHKL09].

Animating multiple interacting characters is a very challeng-
ing problem because the computational complexity of naïve ap-
proaches scales exponentially with respect to the number of char-
acters. Many recent studies exploited motion patches to address
the problem. While Lee et al [LCL06] originally invented mo-
tion patches to animate characters in complex virtual environments,
subsequent studies adopted motion patches to deal with interactions
among characters and coordinate their actions in the spatiotempo-
ral domain [SKSY08, HKHL13]. Won et al [WLO⇤14] presented
a pre-visualization system that generates full-body fight scenes of

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.



Kyunglyul Hyun, Kyungho Lee, and Jehee Lee / Motion Grammars for Character Animation

multiple characters from a high-level graphical scene description.
Our work also addresses motion synthesis with single and multiple
characters, but tackles a new aspect of the problem with emphasis
on understanding, formulating, and animating the structured behav-
ior of individuals and their interactions using formal grammars.

Formal languages and context-free grammars have previously
been explored in the computer graphics community for shape anal-
ysis and procedural geometric modeling [LWW08, BWS10] and in
robotics for the control of robotic manipulators [DS13]. Grammar
induction from human motion data has been used to understand the
static structure of human movements [PLL11, GFA10, GFA07]. To
the best of our knowledge, we for the first time demonstrate struc-
tured, full-body motion synthesis for practical applications using
motion grammars.

3. Motion Grammar

The theory of formal languages is well-established in computer sci-
ence. There exists a hierarchy of formal language classes. A set of
languages generated by regular grammars form the smallest class.
Context-free grammars generate a larger class of languages and the
class spanned by context-sensitive grammars is even larger. Regular
grammars are simple, easy-to-implement and thus have frequently
been used in many text processing applications. However, their ex-
pressive power is too limited to deal with the general structures of
programming languages and natural languages. Context-sensitive
grammars are the most powerful among them, but computing with
context-sensitive grammars is extremely demanding. For example,
parsing general context-sensitive grammars is NP-hard. Context-
free grammars have long been considered a trade-off between two
extremes and still tremendously popular in designing programming
languages and processing natural languages. Context-free gram-
mars are not powerful enough to express the whole complexity
of human movements and high-level behavioral patterns. However,
we believe that context-free grammars capture a large portion of
human behavioral structures that is significant enough to have prac-
tical uses.

The context-free grammar has a finite number of terminal and
non-terminal symbols, and includes a set of rules which rewrites the
original string of symbols. Context-free means that each individual
rule replaces a single non-terminal symbol in the string with an-
other string of terminal and non-terminal symbols. One of the non-
terminal symbols serves as a starting symbol and fully expanding
non-terminal symbols (until no non-terminals remain in the string)
generates a string of terminal symbols. Parsing is a reverse process.
It begins with a string of terminal symbols and searches for an or-
dering of rewriting rules that generates the input string. The result
of parsing is a parsing tree. The internal nodes of the tree corre-
spond to non-terminal symbols and its leaf nodes correspond to ter-
minal symbols. The grammar is deterministic if any valid string has
a unique parsing tree. Otherwise, the grammar is non-deterministic.

3.1. Instantiation, Semantics, and Plausibility

The motion grammar is a context-free grammar on motion se-
quences. Terminals are symbolic representations of unit actions,
such as “a half cycle of walk” and “jump shoot”. Each non-terminal

symbol has one or more production rules to substitute itself with se-
ries of symbols. For example, non-terminal symbol “Dribble” can
produce an arbitrarily long sequence of dribbling motions that may
include many dribbling skills by recursively applying the produc-
tion rules. Each terminal symbol is associated with many motion
clips that perform a specific unit action. The multiplicity of motion
clips includes spatial, temporal, and stylistic variations of acting
out the action and thus provides rich connectivity between actions.

Instantiation. The action represented by a terminal symbol is in-
stantiated in the virtual environment by picking a motion clip from
many available choices associated with the symbol and locating the
clip in the environment at a certain time. Instantiating a string of ter-
minal symbols, which we call an action string, selects a sequence
of associated motion clips. Splicing them and smoothing out the
seams make an extended clip, which will be situated in the virtual
environment. Let X be an action string and Y (X) be an extended
motion clip instantiated by X . X is a symbolic representation of the
structure of a character’s action, while Y (X) is a concrete realiza-
tion of the action in the spatiotemporal context. The actual form of
Y (X) is a sequence of a character’s full-body poses varying over
time.

Semantic Rules. The animated scene includes one or more char-
acters, each of which produces a course of actions Xi and its instan-
tiation Yi =Y (Xi). Situating and orchestrating them in the common
environment requires careful coordination and synchronization. We
use three types of semantic rules to orchestrate multiple characters.
Each individual terminal symbol can be annotated with a set of se-
mantic rules, which are inherited to motion instances derived from
the symbol. The semantic rule of the first type locates a character at
desired position and/or direction (p0,q0) 2 R2⇥R at time t in the
environment.

fpos = kpos(Yi, t)�p0k, (1)

fdir = kdir(Yi, t)�q0k, (2)

where pos(Yi, t) and dir(Yi, t) are the position and facing direction,
respectively, of the root segment (pelvis) projected on the ground
surface at the t-th frame of Yi. The rule of the second type synchro-
nizes the action of two (or more) characters.

fsynch =
��(t j� ti)�Dt

��. (3)

For example, if one character passes a ball at frame ti so that the
other character catches the ball at frame t j, Dt is the estimated time
of the ball flying between the characters. The last type coordinates
and aligns the motion of a character with respect to other characters
and environment objects.

fdist =

(
0, if dnear  kpos(Yi, t)�p0k  dfar,

1, otherwise.
(4)

fline = dist
�
pos(Yi, t), line(p1,p2)

�
. (5)

For example, the distance rule fdist encourages a defensive player
to stay near, but not too close to an offensive player. The line rule
fline locates the defensive player on the line between the offensive
player and the goal rim.

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.



Kyunglyul Hyun, Kyungho Lee, and Jehee Lee / Motion Grammars for Character Animation

Non-terminals : {S,W,P,B}
Terminals : {walk, pickup,

putdown,carry}

Production Rules :

S ! walk† W P W walk‡

W ! walk W | e
P ! pickup B putdown | e
B ! carry B

Semantic Rules :

walk† : fpos(start,p0)

walk‡ : fpos(end,p1)
pickup : fdir(object) and

fdist(object, 50cm)

S

PW

pickup

walk

✏ B

putdowncarry B

walk pickup carry putdown X

✏

Y

W walk

✏

walk

Figure 2: A simple example. (Left) The motion grammar for carrying an object. (Middle) A parse tree to generate an action string and a
series of motion clips corresponding to the string. (Right) The motion sequence spliced and situated in the virtual environment.

Plausibility. The structural plausibility of an action string Xi is:

P(Xi)/ gparse · exp
�
� guser

w1

�
, (6)

where gparse is a binary boolean function, of which value is 1 if
the string Xi has a parse tree and 0 otherwise. guser is a user-control
term, which we will discuss in Section 4, and w1 is its weight value.
The semantic plausibility of action instances Y = {Yi} is:

P(Y )/ exp
�
� Â

k2S(Y )

fk
ck
� gsmooth

w2
� gcollision

w3
� geffort

w4

�
, (7)

where S(Y ) is a set of semantic rules associated with Y , ck’s are
weight values, and gsmooth is the smoothness of motion concate-
nation in Y . The smoothness is measured by the weighted sum of
pose and velocity mismatches at the boundaries of two consecutive
motion clips [LCR⇤02]. gcollision is a binary boolean function that
penalizes interpenetration between characters. The function value
is 1 if there is any collision, and 0 otherwise. geffort is an optional
term to choose a better animation among many plausible anima-
tion samples based on a secondary goal, which is either the total
distance the characters travelled or their traveling time in the ani-
mation.

3.2. A Simple Example

A simple example grammar is given in Figure 2(left). The motion
grammar consists of a set of non-terminal symbols {S,W,P,B},
a set of terminal symbols {walk, pickup, putdown,carry}, a start-
ing symbol S, production rules, and semantic rules. The animation
from the grammar shows a character starting to walk from p0 2 R2

towards an object, picking it up, carrying it, putting it down, and
walking towards the target location p1 2 R2. The production rules
generate a valid sequence (in other words, structure) of actions,
while the semantic rules provide spatial context to the motion se-
quence. The semantic rules specify the start and target locations,

and also declare a condition that the character can pick up an ob-
ject if it faces the object and within 50cm from the object. Note that
the grammar does not specify the position of the object to pick up.
Its position may be provided by the user to control the scenario.

The production rules expand the parse tree
�
Figure 2(middle)

�

to generate an action, which describes how many steps the charac-
ter will take to get to the object, how many steps it will take while
carrying the object, and how many steps it will take again to get to
the target location after putting down the object. A series of motion
clips instantiated from the action string describe the details of indi-
vidual walking steps, such as stride length and steering angle. Many
walking motion clips with different strides and steering angles are
available in our motion repertoire, and thus the character’s moving
path depends on both the structure (e.g., the number of steps) of
the action string and its instantiation (e.g., a series of motion clips
with different stride lengths and steering angles). The structure and
its instantiation interact with each other in a way that the charac-
ter may either take a few steps with long stride or more steps with
shorter stride.

Our multi-level MCMC algorithm in Section 5 samples the space
of plausible animations with respect to the production and seman-
tic rules. The most plausible animation from the samples will be
chosen

�
Figure 2(right)

�
. The final step is motion editing to remove

any mismatches in character coordination and synchronization. The
animation is a collage of canned motion clips, so motion clips may
not fit precisely with each other and in the virtual environment. We
use a Laplacian motion editing technique [KHKL09] to get rid of
any residual mismatches, foot sliding, and interpenetration.

4. Basketball Tactics Board

Although our motion grammar is a general method that general-
izes easily to deal with various applications, this paper focuses on a

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.



Kyunglyul Hyun, Kyungho Lee, and Jehee Lee / Motion Grammars for Character Animation

Figure 3: A sketch-based interface for drawing basketball tactics
diagrams

single application domain (i.e., basketball) to discuss the grammar-
based modeling process in-depth. The basketball play is highly-
structured and the players move in a highly-coordinated manner.
While the structures of basketball plays are derived from basket-
ball rules and regulations, the semantic rules emerge from the game
context that includes game strategies, coordinated tactics, and ad-
versarial interaction between offensive and defensive players. We
found that the motion grammar is an effective tool for describing
the structure and semantics of basketball plays (see Appendix for
the motion grammar with production and semantic rules).

Given the motion grammar for basketball plays, we can generate
three-dimensional, full-body basketball animation from a diagram
sketch on the tactics drawing board (Figure 3). Since the diagram is
simple, sparse, and abstractive, reconstructing 3D animation from
the diagram is an ill-conditioned problem. The motion grammar
is a key to the reconstruction of structurally-valid, semantically-
meaningful plays from a sparse sketch. Our sketch-based interface
for the tactics board includes five elements:

Circle: The circle indicates the location of a player. Offensive
players are shown in red-tones and defensive players are shown
in blue-tones.

Solid arrow: A solid arrow from a circle to the goal rim indicates
a player shooting a basketball.

Solid curve with arrow: A solid curve with an arrow end de-
scribes a moving path of a player who may walk, run, or dribble
along the path.

Dashed line with arrow: A dashed line with an arrow end de-
scribes one player passing a basketball to the other player.

Zigzag line: The zigzag lines indicate feint moves and rapid pivot
turns.

T-end: A moving path with a T-end indicates an offensive player
setting a screen to block a defensive player.

The tactics diagram in Figure 3 implicates the structure and se-
mantics of the play; the offensive player A2 outside the three-point
line runs toward the free throw line to catch a pass from player A1,
and dribbles the ball toward the goal rim to make a shoot. In the
meantime, player A3 sets a screen to block the defensive player D2.
A regular expression X̂ = (walk|run)⇤(catch)(dribble)⇤(shoot)
describes the role of the player A2 in the tactics. Any action string
X fits to the diagram if the regular expression X̂ matches a substring
of X . Here, the substring may not be continuous in X . The actual
computation is simple. We drop the asterisk symbols from the ex-
pression X̂ and then the following equation evaluates how well X
matches the description of an individual player.

guser = length(X̂)�LCS(X , X̂), (8)

where LCS(X , X̂) is the length of the longest common subsequence
of X and X̂ .

The diagram also generates a set of auxiliary semantic rules. The
circles locate the characters at desired positions ( fpos). The direc-
tion of a character when shooting or passing a ball is also implied
in the diagram ( fdir). Synchronization rules ( fsynch) are set between
reciprocal actions, for example, “passing a ball” and “catching a
ball”, or “setting a screen” and “pushing against the screen”. Al-
though it is not clearly specified in the diagram who is holding the
ball at the beginning of the animation, the ball holder can be in-
ferred by tracing the diagram backward from either shoot or pass
elements. The diagram is infeasible if it has more than one ball
holders or has a link traversing backward in time.

5. Motion Synthesis

The basketball tactics diagram implicates basketball plays gov-
erned by a motion grammar G and auxiliary semantic rules { fk}
derived from the diagram. An animated basketball play is a tu-
ple Z =

�
{Xi},{Yi},{Ti}

�
, where Xi is an action string of the i-th

player, Yi is an instance of Xi, and Ti is a parse tree of Xi. A set
of play scenes form a probability distribution, and a play scene is
likely to emerge with probability P(Z) / P(X)P(Y ) in Equation
(6) and (7), where X = {Xi} and Y = {Yi}. Conceptually, synthe-
sizing an animated scene from a diagram is to choose the most
probable scene from the distribution with respect to our plausi-
bility measures. The probability distribution of animated scenes is
high-dimensional and very complex. The dimensionality of an ani-
mated scene includes the complexity of full-body poses, the dimen-
sion of time, and the coordination of multiple characters. There-
fore, searching the most probable scene in such a high-dimensional
space is computationally demanding.

We formulate the scene reconstruction in the framework of
Markov Chain Monte Carlo (MCMC) methods, which are a class of
algorithms for sampling from a high-dimensional probability dis-
tribution from which direct sampling is difficult. Specifically, the
Metropolis-Hastings algorithm is an MCMC method for obtaining
a sequence of random samples that approximate the target prob-
ability distribution. We modified and generalized the Metropolis-
Hastings algorithm to cope with the complexity of animated scenes,

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.



Kyunglyul Hyun, Kyungho Lee, and Jehee Lee / Motion Grammars for Character Animation

including the hierarchical structure of parse trees, the symbolic de-
scription of actions, and their instances in the virtual environment.
Our formulation separates the structure and semantics of basket-
ball plays into two layers. The structure layer is symbolic and tree-
structured, while the semantic layer is continuous and spatiotempo-
ral. Our novel multi-level MCMC algorithm can deal with the het-
erogeneous (structure vs semantics, symbolic vs continuous, and
space vs time) nature of the scene reconstruction problem.

The Metropolis-Hastings algorithm begins with an arbitrary ini-
tial sample Z(0) and performs random walk to generates a Markov
chain of random samples {Z(1),Z(2), · · ·}. The random walk re-
quires a proposal density function Q(Z0;Z), which suggests a new
proposal Z0 given the previous sample Z. The proposal is accepted
with the ratio

aZ!Z0 = min
✓

1,
P(Z0)Q(Z;Z0)
P(Z)Q(Z0;Z)

◆
. (9)

If the new sample is rejected, the next sample is the previous sam-
ple Z. Repeating this process generates a chain of samples one by
one. Theoretically, the chain of samples converge to the target prob-
ability distribution with an arbitrary proposal density function. Se-
lecting Q, however, influences heavily the computational perfor-
mance of the algorithm in practice. Therefore, defining an effective
proposal density function is a key to the application of an MCMC
algorithm.

Random Walks. We introduce two types of random jumps to
generate a Markov chain. The first type QI(Y 0;Y ) substitutes a mo-
tion clip with another motion clip in Y , leaving the action strings X
and its parse trees T remain unchanged. Note that the scene may
have multiple characters, each of which has an action string, its in-
stance, and a parse tree. The proposal density QI selects one of the
characters and picks one motion clip among a series of the char-
acter’s motion clips. A new motion clip is instantiated randomly
from the same motion symbol that generated the original motion
clip. The probability of suggesting a particular motion clip for sub-
stitution is proportional to the error induced by the motion clip
in � log

�
P(Y )

�
from Equation (7). The motion clip will be more

likely to be chosen if it violates semantic rules, involves in a col-
lision, or the connection to its previous or next motion clip is not
smooth.

The second type QS(T 0;T ) makes a larger, structural change to
the scene by replacing a subtree of a parse tree Ti 2 T with a new
subtree. The root of any subtree is a non-terminal symbol T . We
generate a new subtree randomly by applying production rules re-
cursively starting from the root symbol and updating action strings
accordingly. Motion clips are re-instantiated from new action sym-
bols and therefore Y is changed as well. The scope of the change
varies depending on the size of the subtree. The change can be as
little as replacing a single action symbol with another, and as big
as replacing the whole scene with a random scene. The proposal
density should make a good balance among jumps of various sizes.
The probability of suggesting a particular subtree for substitution
is proportional to the error induced by the subtree. The error E(T )
is defined recursively:

E(T ) =
�

’
T 02child(T )

E(T 0)
� 1

n+1 (10)

which is the geometric mean of errors of the child nodes, and n
is the number of child nodes. The rationale of using the geometric
mean is as follows. If the errors in the child nodes are equally high
or equally low, the parent node is equally likely to be suggested
for substitution as its descendants. If error-prone nodes and error-
less nodes are mixed in the descendants, the parent node is less
likely to be suggested than its descendants. In this case, the pro-
posal density tends to suggest error-prone descendant nodes selec-
tively rather than make a big jump of substituting the parent node.
We used the (n+ 1)-th root instead of the n-th root to favor small
jumps moderately over larger jumps.

Algorithm 1 Multi-level MCMC

1: Z(0) (X (0),Y (0),T (0))
2: for i 1 to N do

3: repeat

4: T 0 ⇠ QS(T 0;T (i�1))
5: X 0 string(T 0)
6: until P(X 0)> 0
7: Ȳ (0) instantiate(X 0)
8: for j 1 to M do

9: Y 0 ⇠ QI(Y 0;Ȳ ( j�1))

10: b min(1, P(Y 0)QI(Ȳ ( j�1);Y 0)
P(Ȳ ( j�1))QI(Y 0;Ȳ ( j�1))

)

11: if random()< b then

12: Ȳ ( j) Y 0

13: else

14: Ȳ ( j) Ȳ ( j�1)

15: end if

16: end for

17: Z0 (X 0,Ȳ (M),T 0)

18: a = min(1, P(Z0)QS(T (i�1);T 0)
P(Z(i�1))QS(T 0;T (i�1))

)

19: if random()< a then

20: Z(i) Z0

21: else

22: Z(i) Z(i�1)

23: end if

24: end for

25: return {Z(1), . . .Z(N)}

Multi-level MCMC Algorithm. Our algorithm begins with ini-
tial scene Z(0) that is structurally-plausible (i.e., P(X (0)) > 0 in
Equation (6)). It means that the action strings have valid parse trees
and match the input tactics diagram. The algorithm has two nested
loops. The outer loop is for structural jumps, while the inner loop is
for optimizing the instantiation of the scene. The structural jumps
are allowed only between structurally-plausible configurations (line
3–6). The semantic-layer MCMC instantiates a new scene from
the structure suggestion X 0 and optimizes the scene with respect
to semantic rules and quality measures in Equation (7) (line 7–
16). random() is a function drawing a random number in [0,1).
The structure suggestion is either accepted or rejected based on a
structure-layer MCMC method (line 17–23).

Bootstrapping. The bootstrapping is a process of finding a
structurally-plausible initial configuration (X (0),T (0)) before our
multi-level MCMC algorithm starts. Since action strings are always

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.



Kyunglyul Hyun, Kyungho Lee, and Jehee Lee / Motion Grammars for Character Animation

Action Clips Action Clips Action Clips

screen 9 hold 6 feint 10

block 20 guard 121 push 9

pass 41 fake_shot 11 pivot_l 10

pivot_r 14 dribble 146 shoot 27

catch 41 walk 64 run 72

layup 15 Total 598

Table 1: The number of motion clips for each action symbol

derived by using production rules and parse trees, X (0) is valid if
guser = 0. The bootstrapping is yet another MCMC algorithm that
searches for a valid configuration with probability P(X) and pro-
posal density QS(T 0;T ).

Parallel Tempering. Although MCMC algorithms are theoret-
ically guaranteed to converge even in high dimensional space, the
more difficult problem is to make it converge faster. The speed of
convergence is closely related to determining proper size of jump
proposals especially with complex structures such as motion gram-
mars. When jumps are too big, proposals are easily rejected and
thus new samples are rarely accepted. Using small jumps only,
on the other hand, leads to trapping in local extrema. Instead of
going through laborious parameter tuning, we can run different
chains simultaneously using a parallel tempering scheme [Gey91].
We generate multiple copies of Markov chains with target distribu-
tions Pn(Z)/ P1/Tn(Z) of different temperatures. The chain of high
temperatures allows big jumps, while the chain of low temperature
tends to search samples near local extrema with small jumps. An
important feature of parallel tempering is exchanging samples at
different temperatures based on the Metropolis criterion.

an$n+1 = min
✓

1,
Pn(Zn+1)Pn+1(Zn)
Pn(Zn)Pn+1(Zn+1)

◆
(11)

This swapping process gradually sends good samples to cool chains
to stabilize the optimization process and bad examples to hot chains
to explore new possibilities more aggressively. The simultane-
ous generation of multiple chains is easily implemented on multi-
core/multi-thread architectures to parallelize the computation.

6. Results

Our motion grammar for basketball plays is given in Appendix. The
grammar has two sets of production rules; one for offensive play-
ers and the other for defensive players. The grammar has 19 non-
terminal symbols and 17 terminal symbols. The offensive players
start with non-terminal symbol SA to expand their action strings,
while the defensive players start with SD. Although we use two
starting symbols in the example, the grammar can be adapted for
individual player positions with a slight modification. Our basket-
ball grammar is deterministic and in the LR(1) class of grammars. It
means that any action string can be parsed sequentially by descend-
ing through productions recursively, picking the next production to
expand using a single token of lookahead without backtracking.

Backdoor Give and Go

Screen Double Team

Passing Drills Weave Pass

Figure 4: Diagram sketches

Even though our MCMC algorithm does not require determinis-
tic grammars, it is convenient to have a deterministic parser when
we want to use simpler motion synthesis algorithms based on A*-
search, dynamic programming, or reinforcement learning.

The motion grammar can be easily incorporated into existing an-
imation systems that are equipped with the motion graph or the fi-
nite state machine of the character’s action. The motion grammar
facilitates data-driven motion analysis and synthesis in many ways.

Validation: Given any motion data, the grammar parser can check
if the motion is feasible with respect to the grammar governing
its behavior. Grammar parsing reveals the hierarchical process
how a sequence of actions are structured.

Action Suggestion: Assuming that a sequence of actions have
already been performed, the parser can suggest a set of
structurally-valid, plausible candidates for the next action. This
allows us to choose a series of actions one-by-one sequentially

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.



Kyunglyul Hyun, Kyungho Lee, and Jehee Lee / Motion Grammars for Character Animation

as if we use a motion graph. It means that the motion grammar
can replace a motion graph seamlessly in existing animation sys-
tems.

Interactive Editing: Interactive manipulation of motion data en-
tails continuous deformation of motion paths and large defor-
mation often leads to structural changes on a sequence of ac-
tions [KHKL09]. Discrete, structural editing of motion data may
introduce a new action in the middle of the sequence to cope
with user manipulation, remove an action from the sequence, or
reorder the actions to form a novel sequence. Motion grammars
can parse valid structural changes and suggest new plausible se-
quences.

Motion Planning and Synthesis: Given a collection of motion
fragments, there exist a number of motion planning and synthe-
sis algorithms that can generate a sequence of motion fragments
by splicing them together to satisfy user-specified goals and con-
straints. The motion grammar can facilitate any synthesis prob-
lem that entails splicing of actions.

Motion Data. We collected about 100 minutes’ worth of bas-
ketball motion data, which captured two to four players simulta-
neously in each session. We segmented and labelled raw motion
data manually to identify 598 motion clips, each of which is asso-
ciated with a terminal symbol (Table 1). The motion clips are an-
notated with context information, including keyframes where im-
portant events occur (e.g., the moment of releasing a ball for shoot-
ing/passing and the moment of catching a ball), reciprocal relations
between motion clips (e.g., pass and catch, shoot and block), and
the relative pose of interacting players (e.g., the position and direc-
tion of a catcher relative to the passer, and the position and direction
of a shooter relative to the goal rim). Our motion data do not include
hand motion. The gaze direction, hand shapes, and ball trajectories
are added to match the scene context in the post-processing phase.

Tactics Diagram. A number of offensive and defensive tac-
tics/drill plans are available in basketball textbooks and coaching
guides in the form of diagram sketches. We reproduce 3D animated
scenes for representative diagram sketches (Figure 4) including of-
fensive tactics (e.g., Pass and Shoot, Backdoor, Screen, and Give
and Go), defensive tactics (e.g., Double Team), and drills (e.g.,
Weave Pass). Our algorithm works well with any diagram sketches
as long as a vocabulary of actions are readily available. The inter-
face system is very easy to use. The user can sketch an arbitrary
diagram using a set of predefined elements (e.g., location, move,
pass, shoot, screen, and feint). Then, the system checks the valid-
ity of the diagram and generates a 3D animated scene in a fully
automatic manner.

Performance. Reconstructing play scenes from scratch took 3
to 10 minutes depending on the number of characters, the com-
plexity of interaction among them, and the length of the anima-
tion (Table 2). Performance statistics are measured on a desktop PC
equipped with an Intel Core i7-4820K CPU (8 cores, 3.7 GHz) and
and 32 GB main memory, except for the 20-core parallel tempering
example, which runs on another machine with slower Intel Xeon
E7-4870 CPUs (2.4 GHz). The semantic layer sampling (the inner
loop in the algorithm) takes more computation than the structure-
layer sampling (the outer loop). The computation times for boot-
strapping and motion editing in the post-processing phase are negli-

Figure 5: A single Markov chain vs parallel tempering. The X-
axis is the computation time in seconds, and the Y-axis is the error
� log(P(Y )). The performance is averaged over 10 trials for each
of a single chain, 6-core tempering, and 20-core tempering.

gible comparing to the MCMC sampling. Parallel tempering effec-
tively parallelizes the sampling procedure. As shown in Figure 5,
the benefits of parallel tempering are twofold. It achieves a signif-
icant performance gain over single-chain sampling and, more im-
portantly, finds a better solution effectively avoiding local extrema.
The 6-core tempering converges to a better solution than a single
Markov chain, and the 20-core tempering converges to a even better
solution.

The optimization performance based on MCMC sampling de-
pends heavily on the choice of the initial configuration. If the user
changes the input diagram slightly, the animation can be updated
incrementally by taking the previous result as the initial configu-
ration for the subsequent optimization. Our algorithm allows the
input diagram to be manipulated interactively and updates the cor-
responding animation at interactive rates with up to two players.
The incremental update for a small change is in average two orders
of magnitude faster than the full reconstruction from scratch, so it
takes only several seconds to update the example scenes incremen-
tally.

7. Discussion

We have presented the motion grammar as a general method for
designing the behavior model of characters and generating ani-
mated scenes from a simple sketch. The rigorous formulation of
the behavior model made it possible to synthesize the coordination
and interaction among multiple characters, which are structurally-
valid as well as semantically-meaningful. Even though our focus
has been on animating basketball plays in this paper, our approach
could be easily extended to deal with other types of scenes where
there is a requirement for the structured behavioral patterns and
the coordination of multiple interacting characters, such as sports,
dancing, and social interactions.

Our motion grammar is a subset of the comprehensive grammar
for basketball plays, since our motion grammar focused on model-
ing scenarios that are likely to appear in tactics plans. For example,
consider a scenario that a ball is loose on the court and players
compete for the ball. Such a scenario can occur in real basketball

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.



Kyunglyul Hyun, Kyungho Lee, and Jehee Lee / Motion Grammars for Character Animation

Diagram # of # of motion # of animation Computation time (second)

characters instances frames Outer loop Inner loop

Pass and Shoot 4 33 179 25 217

Screen 5 18 132 28 215

Backdoor 4 20 136 17 160

Give and Go 6 36 158 45 309

Double Team 4 22 170 25 244

Passing Drills 3 34 235 103 485

Weave Pass 3 26 245 86 436

Table 2: Results and performance.

plays, but it is unlikely to consider such an unusual scenario in a
tactics plan. An advantage of our grammar-based approach is its
flexibility and scalability. Even though our motion grammar is not
comprehensive in the present form, it is easy to add new produc-
tion and semantic rules incrementally to deal with a larger domain
of basketball plays, situations, and scenarios.

The most time-consuming part of the grammar-based modeling
is motion data segmentation and labelling. Although there have
been significant technical advances recently in data-driven ani-
mation, automating motion segmentation and labelling are still
challenging. Many game developer companies have already built
domain-specific motion databases and finite state machines for
character animation using a number of labelled motion clips. The
motion grammar can be built on top of those readily-available mo-
tion databases to have more structure than a finite state machine can
offer.

Recent basketball video games provide rich details of characters’
motion using large, high-quality motion databases captured from
professional players. The character animation algorithms in video
games are usually simple and very efficient. The efficiency comes
at a cost of compromising the quality of animation. Typically, game
characters are allowed to slide or change its position or direction
suddenly in an implausible manner. Game developers design finite
state machines and character control mechanisms very carefully to
make such artifacts less obtrusive. The goal of this work is different
than what game developers are pursuing. Our MCMC algorithm is
a general solution method to address the problem without compro-
mising structural and semantic constraints.

Won et al [WLO⇤14] also addressed the animation of tightly-
coupled multiple interacting characters from a sparse, high-level
description, though their generate-and-rank method is quite differ-
ent from ours and their problem domain (scripts-based description
for fight scenes) is also different from our basketball tactics ani-
mation. Technically, the generate-and-rank method based on a mo-
tion graph and uniform random sampling is complementary to our
motion grammars, which would provide more structures and bet-
ter descriptions on their fight scenes. Uniform random sampling
for motion synthesis can be replaced with our multi-level MCMC
sampling to achieve significant performance improvements. Con-
versely, their generate-and-rank method can be a valuable supple-

ment to our MCMC algorithm, which generates a chain of samples.
Although generated samples are the best samples with respect to
the plausibility measure, they are similar to each other due to the
Markov property of random walks. The generate-and-rank algo-
rithm would add diversity to the system by providing the user with
multiple distinct representative samples. Our motion grammar also
improves the flexibility of description. While the relative position
and orientation of characters participating in each interaction event
are fixed in their work, our motion grammar allows the relation-
ships among characters to be flexibly described in rules so that a
range (from tightly-coupled to loosely coupled) of interactions can
be dealt with in our work.

An interesting direction for future research is inferring motion
grammars automatically from a corpus of motion data. In com-
putational linguistics, grammar induction has been an active re-
search topic to learn a formal grammar from a corpus of texts.
Grammar induction is also called grammatical inference. Learning
weak structures and habitual patterns from loosely organized dance
choreography and idling pedestrians seems feasible [PLL11]. How-
ever, learning stronger structures, such as basketball rules, directly
from a database of basketball motions would be challenging even
with state-of-the-art grammar induction algorithms. Probably, se-
mantic reasoning and extra negative samples (violating basketball
rules) would allow us to infer motion grammars from canned mo-
tion data.

Acknowledgements

This work was supported by the National Research Foundation
of Korea(NRF) grant funded by the Korea government(MSIP)
(No.2011-0018340 and No. 2007-0056094). The authors would
like to thank Junho Park for his help with experiments.

References

[AFO03] ARIKAN O., FORSYTH D. A., O’BRIEN J. F.: Motion synthe-
sis from annotations. ACM Transactions on Graphics (SIGGRAPH) 22,
3 (2003), 402–408. 2

[BCvdPP08] BEAUDOIN P., COROS S., VAN DE PANNE M., POULIN
P.: Motion-motif graphs. In Proceedings of the ACM SIG-
GRAPH/Eurographics symposium on Computer Animation (2008),
pp. 117–126. 2

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.



Kyunglyul Hyun, Kyungho Lee, and Jehee Lee / Motion Grammars for Character Animation

[BSP⇤04] BARBIČ J., SAFONOVA A., PAN J.-Y., FALOUTSOS C.,
HODGINS J. K., POLLARD N. S.: Segmenting motion capture data into
distinct behaviors. In Proceedings of Graphics Interface 2004 (2004),
GI ’04, pp. 185–194. 2

[BWS10] BOKELOH M., WAND M., SEIDEL H.-P.: A connection be-
tween partial symmetry and inverse procedural modeling. ACM Trans-
actions on Graphics (SIGGRAPH) 29, 4 (2010), 104:1–104:10. 3

[CKHL11] CHOI M. G., KIM M., HYUN K. L., LEE J.: Deformable
motion: Squeezing into cluttered environments. Computer Graphics Fo-
rum (Eurographics) 30, 2 (2011), 445–453. 2

[DS13] DANTAM N., STILMAN M.: The motion grammar: Analysis of a
linguistic method for robot control. IEEE Transactions on Robotics 29,
3 (2013), 704–718. 3

[Gey91] GEYER C. J.: Markov chain monte carlo maximum likelihood.
Proceedings of the 23rd Symposium on the Interface: Computing Science
and Statistics (1991), 156–163. 7

[GFA07] GUERRA-FILHO G., ALOIMONOS Y.: A language for human
action. Computer 40, 5 (2007), 42–51. 3

[GFA10] GUERRA-FILHO G., ALOIMONOS Y.: The syntax of human
actions and interactions. Journal of Neurolinguistics, 5 (2010), 500–514.
3

[Gle98] GLEICHER M.: Retargetting motion to new characters. In Pro-
ceedings of the 25th Annual Conference on Computer Graphics and In-
teractive Techniques (1998), SIGGRAPH ’98, pp. 33–42. 2

[HKHL13] HYUN K., KIM M., HWANG Y., LEE J.: Tiling motion
patches. IEEE Transactions on Visualization and Computer Graphics
19, 11 (2013), 1923–1934. 2

[KGP02] KOVAR L., GLEICHER M., PIGHIN F.: Motion graphs. ACM
Transactions on Graphics (SIGGRAPH) 21, 3 (2002), 473–482. 2

[KHKL09] KIM M., HYUN K., KIM J., LEE J.: Synchronized multi-
character motion editing. ACM Transactions on Graphics (SIGGRAPH)
28, 3 (2009), 79:1–79:9. 2, 4, 8

[KLLT08] KWON T., LEE K. H., LEE J., TAKAHASHI S.: Group mo-
tion editing. ACM Transactions on Graphics (SIGGRAPH) 27, 3 (2008),
80:1–80:8. 2

[KSKL14] KIM J., SEOL Y., KWON T., LEE J.: Interactive manipula-
tion of large-scale crowd animation. ACM Transactions on Graphics
(SIGGRAPH) 33, 4 (2014), 83:1–83:10. 2

[LCL06] LEE K. H., CHOI M. G., LEE J.: Motion Patches: Building
blocks for virtual environments annotated with motion data. ACM Trans-
actions on Graphics (SIGGRAPH) 25, 3 (2006), 898–906. 2

[LCR⇤02] LEE J., CHAI J., REITSMA P. S. A., HODGINS J. K., POL-
LARD N. S.: Interactive control of avatars animated with human motion
data. ACM Transactions on Graphics (SIGGRAPH) 21, 3 (2002), 491–
500. 2, 4

[LHP05] LIU C. K., HERTZMANN A., POPOVIĆ Z.: Learning physics-
based motion style with nonlinear inverse optimization. ACM Transac-
tions on Graphics (SIGGRAPH) 24, 3 (2005), 1071–1081. 2

[LLKP11] LEVINE S., LEE Y., KOLTUN V., POPOVIĆ Z.: Space-time
planning with parameterized locomotion controllers. ACM Transactions
on Graphics 30 (2011), 23:1–23:11. 2

[LS99] LEE J., SHIN S. Y.: A hierarchical approach to interactive mo-
tion editing for human-like figures. In Proceedings of the 26th Annual
Conference on Computer Graphics and Interactive Techniques (1999),
SIGGRAPH ’99, pp. 39–48. 2

[LWB⇤10] LEE Y., WAMPLER K., BERNSTEIN G., POPOVIĆ J.,
POPOVIĆ Z.: Motion fields for interactive character locomotion. ACM
Transactions on Graphics (SIGGRAPH ASIA) 29 (2010), 138:1–138:8.
2

[LWW08] LIPP M., WONKA P., WIMMER M.: Interactive visual editing
of grammars for procedural architecture. ACM Transactions on Graphics
(SIGGRAPH) 27, 3 (2008), 102:1–102:10. 3

[MC12] MIN J., CHAI J.: Motion graphs++: A compact generative
model for semantic motion analysis and synthesis. ACM Transactions
on Graphics (SIGGRAPH ASIA) 31, 6 (2012), 153:1–153:12. 2

[MCC09] MIN J., CHEN Y.-L., CHAI J.: Interactive generation of hu-
man animation with deformable motion models. ACM Transactions on
Graphics 29 (2009), 9:1–9:12. 2

[MP07] MCCANN J., POLLARD N.: Responsive characters from motion
fragments. ACM Transactions on Graphics (SIGGRAPH) 26, 3 (2007).
2

[PLL11] PARK J. P., LEE K. H., LEE J.: Finding syntactic structures
from human motion data. Computer Graphics Forum 30 (2011). 3, 9

[RCB98] ROSE C., COHEN M. F., BODENHEIMER B.: Verbs and Ad-
verbs: Multidimensional motion interpolation. IEEE Computer Graphics
and Applications 18 (1998), 32–40. 2

[SH07] SAFONOVA A., HODGINS J. K.: Construction and optimal
search of interpolated motion graphs. ACM Transactions on Graphics
(SIGGRAPH) 26, 3 (2007). 2

[SKSY08] SHUM H. P. H., KOMURA T., SHIRAISHI M., YAMAZAKI
S.: Interaction patches for multi-character animation. ACM Transactions
on Graphics (SIGGRAPH ASIA) 27, 5 (2008), 114:1–114:8. 2

[SKY12] SHUM H. P. H., KOMURA T., YAMAZAKI S.: Simulating
multiple character interactions with collaborative and adversarial goals.
IEEE Transactions on Visualization and Computer Graphics 18, 5 (May
2012), 741–752. 2

[SL06] SHIN H. J., LEE J.: Motion synthesis and editing in low-
dimensional spaces. Computer Animation and Virtual Worlds 17, 3-4
(2006), 219–227. 2

[SO06] SHIN H. J., OH H. S.: Fat graphs: constructing an interac-
tive character with continuous controls. In Proceedings of the ACM
SIGGRAPH/Eurographics symposium on Computer Animation (2006),
pp. 291–298. 2

[TLP07] TREUILLE A., LEE Y., POPOVIĆ Z.: Near-optimal charac-
ter animation with continuous control. ACM Transactions on Graphics
(SIGGRAPH) 26, 3 (2007). 2

[WLO⇤14] WON J., LEE K., O’SULLIVAN C., HODGINS J. K., LEE
J.: Generating and ranking diverse multi-character interactions. ACM
Transactions on Graphics (SIGGRAPH ASIA) 33, 6 (2014), 219:1–
219:12. 2, 9

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.



Kyunglyul Hyun, Kyungho Lee, and Jehee Lee / Motion Grammars for Character Animation

Appendix

Starting symbols : {SA,SD}
Non-terminals : {SA,Moves,Move,Attacks,

Ball,Shoot,Catch,Feint,Runs,
Pivot,PivotL,PivotR,Fake,
Fakes,Dribble,Dribbles,
SD,De f enses,De f ense}

Terminals : {run,walk, idle,screen,hold,catch,
f eint, pivot_le f t, pivot_right,
dribble, pass,shoot, layup,
f ake_shot,guard,block, push}

Production Rules :

Attack

SA ! Moves Attacks
SA ! Attacks

Moves ! Move | Move Moves
Move ! run | walk | idle | screen

Ball play

Attacks ! Ball pass Moves Attacks
Attacks ! Ball Shoot | e

Ball ! Catch Pivot Dribble
Catch

Catch ! hold | catch | Feint catch
Feint ! f eint Runs
Runs ! e | run Runs
Pivot

Pivot ! e | PivotL Fake | PivotR Fake
PivotL ! pivot_le f t | pivot_le f t PivotL
PivotR ! pivot_right | pivot_right PivotR
Fake

Fake ! e | Fakes
Fakes ! f ake_shot | f ake_shot Fakes

Dribble

Dribble ! e | Dribbles Pivot
Dribbles ! dribble | dribble Dribbles

Shoot

Shoot ! layup | shoot
Defense

SD ! De f enses
De f enses ! De f ense | De f ense De f enses
De f ense ! run† | walk† | guard
De f ense ! block | push

Semantic Rules :

pass : fdir(receiver),
fsynch(receiver,catch,Dt)

layup : fdir(rim) and fdist(rim, 2.5m)
shoot : fdir(rim) and fdist(rim,> 1.5m)
f eint : fdist(opponent,< 1m)

f ake_shot : fdist(opponent,< 1m)
screen : fdir(receiver),

fsynch(opponent, push,0)
run†,walk† : fdir(opponent), fline(opponent, rim)

guard : fdist(opponent,> 50cm and  2m)
block : fdir(opponent),

fline(opponent, rim),
fsynch(opponent,{shoot, f ake_shot},0)

c� 2016 The Author(s)
Computer Graphics Forum c� 2016 The Eurographics Association and John Wiley & Sons Ltd.


