
SoftCon: Simulation and Control of Soft-Bodied Animals with
Biomimetic Actuators

SEHEE MIN, Seoul National University
JUNGDAMWON, Seoul National University
SEUNGHWAN LEE, Seoul National University
JUNGNAM PARK, Seoul National University
JEHEE LEE, Seoul National University

Fig. 1. The octopus swims by actuating muscles embedded in the soft tissues.

We present a novel and general framework for the design and control of
underwater soft-bodied animals. The whole body of an animal consisting
of soft tissues is modeled by tetrahedral and triangular FEM meshes. The
contraction of muscles embedded in the soft tissues actuates the body and
limbs to move. We present a novel muscle excitation model that mimics the
anatomy of muscular hydrostats and their muscle excitation patterns. Our
deep reinforcement learning algorithm equipped with the muscle excita-
tion model successfully learned the control policy of soft-bodied animals,
which can be physically simulated in real-time, controlled interactively, and
resilient to external perturbations. We demonstrate the effectiveness of our
approach with various simulated animals including octopuses, lampreys,
starfishes, stingrays and cuttlefishes. They learn diverse behaviors such
as swimming, grasping, and escaping from a bottle. We also implemented
a simple user interface system that allows the user to easily create their
creatures.

CCS Concepts: • Computing methodologies→ Animation; Physical sim-
ulation; Reinforcement learning; Volumetric models.

Additional Key Words and Phrases: character animation, deformable charac-
ter, soft-bodied animal, finite elementmethod, physics-based control, optimal
control, reinforcement learning

Authors’ addresses: Sehee Min, Department of Computer Science and Engineering,
Seoul National University, sehee@mrl.snu.ac.kr; Jungdam Won, Department of Com-
puter Science and Engineering, Seoul National University, nonaxis@gmail.com; Seungh-
wan Lee, Department of Computer Science and Engineering, Seoul National University,
lsw9021@mrl.snu.ac.kr; Jungnam Park, Department of Computer Science and Engi-
neering, Seoul National University, jungnam04@mrl.snu.ac.kr; Jehee Lee, Department
of Computer Science and Engineering, Seoul National University, jehee@mrl.snu.ac.kr.

© 2019 Association for Computing Machinery.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3355089.3356497.

ACM Reference Format:
Sehee Min, Jungdam Won, Seunghwan Lee, Jungnam Park, and Jehee Lee.
2019. SoftCon: Simulation andControl of Soft-BodiedAnimalswith Biomimetic
Actuators. ACM Trans. Graph. 38, 6, Article 208 (November 2019), 12 pages.
https://doi.org/10.1145/3355089.3356497

1 INTRODUCTION
Soft-bodied animals are common types of animals on Earth. Most
soft-bodied animals on the ground are small (e.g., worms) because
they do not have internal supporting structures that help them re-
sist gravity, whereas soft-bodied animals under the water can grow
bigger (e.g., giant squids). Soft-bodied animals lack hard parts, such
as skeletons and shells, and their bodies are mainly composed of
fleshes and muscles. There have been a series of studies in biol-
ogy as to how soft-bodied animals, such as octopuses and squids,
move their bodies and perform all the functions that are usually
performed by skeletons in vertebrates [Yekutieli et al. 2003]. Soft-
bodied manipulators, such as octopus arms, elephant trunks, and
vertebrate tongues, are called muscular hydrostats. Compared to
articulated arms, muscular hydrostats are hyper-redundant manipu-
lators having a large number of degrees of freedom. For example,
the octopus arm has long muscle fibers along the entire length of
the arm, and every single segment can be activated independently
to have a continuum of controllable muscle fibers.

The passive simulation of deformable objects has long been an ac-
tive research topic in computer graphics and employed in film mak-
ing, in game development, and even in material science for simulat-
ing various material and relevant physical phenomena [Smith et al.
2018]. However, there have been only a few studies on active simula-
tion of deformable soft-bodied animals and their control. There are
several technical challenges in creating interactively controllable
soft-bodied creatures. The challenges include the physics-based

ACM Trans. Graph., Vol. 38, No. 6, Article 208. Publication date: November 2019.

208:2 • Min et. al

modeling and simulation of soft tissues, muscles, and their contrac-
tion dynamics, the robust control of highly redundant dynamics
systems, and mimicking the biological motion of live creatures.
In this paper, we present a novel and general framework for the

design and control of soft-bodied animals. We are particularly in-
terested in underwater animals with a variety of body shapes and
actuation structures. The soft tissues and muscles are modeled by
tetrahedral Finite Element Method (FEM) meshes. Nerve cords de-
liver excitation signals to cause muscle contraction. We developed
a new muscle excitation model, which we call Adaptive Propagation
Muscle Excitation Model (AP-MEM). Our model is biomimetic in the
sense that it mimics the way muscle excitation signals propagate
along muscular hydrostats. The new muscle excitation model is
a key component that allows us to reproduce swimming patterns
that resemble those of real creatures. We incorporated the muscle
excitation model into a Deep Reinforcement Learning (DRL) algo-
rithm to construct the controllers of soft-bodied animals, which can
be physically simulated in real-time, controlled interactively, and
resilient to an external perturbation such as collisions.
We will demonstrate various simulated animals including lam-

preys, starfishes, octopuses, stingrays, and cuttlefishes. The simu-
lated animals learned to swim and perform goal-driven (task-based)
maneuvers. We also developed a simple user interface system that
allows the user to easily create their creatures.

2 RELATED WORK
Physically Simulated Characters. The research on physically sim-

ulated characters has pursued improving physical realism, respon-
siveness to the user’s control, and robustness against external per-
turbation. Although human-like bipeds have been at the center of
interests for decades [Coros et al. 2010; da Silva et al. 2008; Hodgins
et al. 1995; Laszlo et al. 1996; Lee et al. 2018, 2014; Liu et al. 2016;
Sok et al. 2007; Wang et al. 2012; Ye and Liu 2010; Yin et al. 2007],
quadruped [Coros et al. 2011], multi-legged [Fang et al. 2013], swim-
ming [Grzeszczuk et al. 1998; Pan and Manocha 2018; Tan et al. 2011;
Tu and Terzopoulos 1994], flying [Ju et al. 2013; Pan and Manocha
2018; Wu and Popović 2003], and even imaginary creatures [Coros
et al. 2012; Tan et al. 2012] have also been studied and demonstrated.
Recently, DRL has gained great attention in physics-based character
control due to its powerful capability of learning controllers [Liu
and Hodgins 2018; Peng et al. 2018a, 2016, 2017, 2018b; Won et al.
2017, 2018; Yu et al. 2018]. It has been reported that DRL is adept
at dealing with high-dimensional state and action spaces without
selecting hand-crafted features. Since the dynamic states of soft-
bodied animals and their continuum muscle fibers are inherently
high-dimensional, DRL suits well for learning the control policies
of soft-bodied animals.

Passive Simulation of Deformable Objects. The passive simulation
of deformable objects (e.g., clothes, hairs, rubbers, or muscles) has
long been an important research topic in computer graphics. Solv-
ing the equation of motion based on implicit integration has been
regarded as a de facto method that achieves the stability and effi-
ciency in deformable object simulation. Baraff and Witkin [1998]
presented a fast simulation technique for mass-spring cloth models
by solving the implicit formulation of the dynamics system, where

the potential energy induced by springs is approximated by Tay-
lor series expansion. Muller et al. [2007] reproduced the physical
phenomena of various objects only in the domain of their positions,
which is called position-based dynamics. Martin et al. [2011] showed
that solving the equation of motion by implicit integration can be
rewritten as a non-convex optimization of the potential energy,
which leads to an example-based simulation by constructing poten-
tial energies from examples. Bouaziz et al. [2014] proposed projective
dynamics, which introduces auxiliary projection variables to solve
the non-convex optimization formulation more efficiently. It has
been reported that projective dynamics substantially improves the
stability and efficiency of deformable object simulation. Recently,
Brandt and his colleagues [2018] developed a model reduction tech-
nique for projective dynamics, which enables real-time simulation
of large-scale deformable meshes. We adopted projective dynamics
as a basic simulation method for our soft-bodied animals.

Active Deformable Character Control. Althoughmost of the physics-
based characters have been skeleton-driven in computer animation,
deformable characters have also been studied based on optimal
control theory. Coping with high-dimensionality of deformable
objects is a key technical challenge and several approaches have
been explored to circumvent the dimensionality issue. A straightfor-
ward approach is to embed a skeleton into soft deformable tissues
in such a way that the character is directly driven by the skele-
ton [Kim and Pollard 2011; Liu et al. 2013]. Alternatively, model
reduction techniques have been studied to reduce the dimension-
ality and computational complexity of the dynamics model explic-
itly [Barbič et al. 2009; Barbič and Popović 2008; Fan et al. 2014;
Pan and Manocha 2018; Schulz et al. 2014]. The two-dimensional
deformable object simulation and contractile elements were used
to animate plushies [Bern et al. 2017]. Coros et al. [2012] used the
change of rest shapes to control soft deformable characters, which
was done by cage-based or example-based adaption. Ijiri et al. [2009]
animated jellyfishes using procedural deformation. Propagation of
signal is considered a source of character control as in our work.
The difference comes from how the contraction of the soft-body is
defined. They designed a linear transformation of the local orienta-
tion field for the soft-body contraction. Linear force actuators play
a role in our method. Tan et al. [2012] formulated the muscle-driven
control of soft deformable bodies into Quadratic Programming (QP)
with complementary constraints. They embedded line muscle seg-
ments into soft tissues to move the body. Our simulated animals also
use muscles as base actuators. The key difference is that our novel
muscle excitation model imitates soft-bodied animals in nature. Fur-
thermore, the use of DRL makes substantial improvements over
QP-based trajectory optimization in such a way that our animals
are simulated in real-time and controlled interactively.

Muscles in Soft-bodied Animals. Muscles are the only source of
actuation for the animals in nature. The contraction dynamics of
muscles produces different actuation patterns from artificial actua-
tors such as motors. The skeletal animation driven by muscles are
well-understood in computer graphics [Geijtenbeek et al. 2013; Lee
et al. 2018, 2014; Wang et al. 2012]. Skeletal muscles in vertebrae are
attached to bones and the functional role of each individual muscle
is clearly defined by the attachment sites and its route between

ACM Trans. Graph., Vol. 38, No. 6, Article 208. Publication date: November 2019.

SoftCon: Simulation and Control of Soft-Bodied Animals with Biomimetic Actuators • 208:3

them. Muscles of soft-bodied animals in nature are quite differ-
ent. For example, the octopus arm is densely packed with muscle
fibers arranged in three different groups (longitudinal, transverse,
and oblique) and the axial nerve cord runs along the center of the
arm [Laschi et al. 2012]. The central motor signal originating from
the brain runs down the nerve cord to activate muscle fibers sequen-
tially from central to peripheral. Unlike vertebrates, for which all
motor signals originate from the brain and spinal nerves, octopus
arms can move even after the arms are cut off from the body. This
observation implies that motor signals may originate in the nerve
cords along the arm. The harmony of motor signals propagated
from central and originated from peripheral produces distinctive
wriggling movements of soft-bodied animals.

3 ANIMAL DESIGN
We assume the soft flesh is hyperelastic and use the Finite Element
Method (FEM) to simulate the soft flesh and muscle fibers. Assuming
n discrete vertices on themesh, its dynamic states can be represented
by the positions of all vertices q ∈ R3n , and their velocities v ∈ R3n .
A discrete-time dynamics system with implicit Euler integration
updates positions and velocities as follows:

qt+1 = qt + hvt+1 (1)
vt+1 = vt + hM−1(fint(qt+1) + fext) (2)

whereh is the time-step size,M ∈ R3n×3n is a massmatrix, fint(qt+1)
= −∇E(qt+1) = −∇

∑
i ViΨi (qt+1) is an internal force computed

from the summation of all element-wise elastic strain energy densi-
tiesV and corresponding volumes Ψ, and fext is an external force
such as hydrodynamic and buoyant force. With implicit Euler in-
tegration, both internal force and external force may depend on
velocities vt+1 at the next time step as well as positions qt+1. In
our case, the hydrodynamics force is supposed to be a function of
nodal velocities. We use a mixed implicit-explicit method to sim-
plify the formulation such that both internal and external forces are
functions of time t and t + 1 . The drawback of this simplification is
the potential instability of the dynamics system that requires the
use of smaller time steps. Our formulation of the hydrodynamics
circumvents the instability issue to a certain degree since drag force
modeling viscous damping of water prevents excessively large hy-
drodynamics force. Even with larger time steps, the use of constant
system matrices derived from Projective Dynamics [Bouaziz et al.
2014] achieves better computational performance than the standard
FEM simulation with implicit Euler integration.

Projective Dynamics. Webriefly overview the key idea of projective
dynamics. Putting the equation (1) into equation (2) results in a
system of linear equation:[

M − h2
∂f
∂q

]
vt+1 = Mvt + h(fint(qt) + fext) (3)

with Taylor expansion of fint(qt+1) ≃ fint(qt) + ∂f
∂q (qt+1 − qt) and

the Hessian ∂f
∂q of E evaluated at q = qt . Once vt+1 is computed

by solving the linear system, the positions qt+1 can be computed
from equation (1). Typical remediation of Taylor approximation
alternates iteratively between solving the linear system and lineariz-
ing the forces during the time step [t , t + 1], requiring the inverse

of the non-constant matrix and evaluating the Hessian at every
iteration. Alternatively, we adopt projective dynamics which pro-
vides an efficient and robust solver for the equivalent problem. The
solver divides the problem into parallelizable local solvers followed
by a global quadratic problem. Let Ci be Constraint Manifold on
which the elastic energy density function Ψi vanishes. The local
minimization problem is formulated as

Ψi (q) = min
pi ∈Ci

k

2
∥Aiq − pi ∥2 (4)

where k is stiffness, Ai is a metric for the constraint, and pi is the
projection on manifold Ci of the current measure Aiq. The form of
Ci and Ai depends on the choice of the energy model, which will be
described in Section 3.1. Depending on the shape of the constraint
manifold, the local problem can be non-linear and computationally
expensive to find the projection pi . Fortunately, once projections
are all determined at local steps, the global step can be very efficient
because the system matrix of equation (3) is constant. Rearranging
the equation (3) results in:

(M + h2L)qt+1 = M(qt + hvt + h2M−1fext) + Jz (5)

where L =
∑
i AT

i Ai , J =
∑
i AT

i Si , z =
∑
i STi pi , and Si are selector

matrices, such that pi = Si z. We factorize the matrix using the
Cholesky decomposition in a pre-processing step.

Hydrodynamics. We use a simplified model of hydrodynamics to
simulate the interaction between the character and the water. The
simplified model computes drag and thrust forces on the surface of
the mesh. The drag force approximates viscous damping of water
and acts in the direction of the relative velocity to the water. The
thrust force is a source of locomotion and acts in the opposite of
the surface normal [Tu and Terzopoulos 1994].

fdrag = 1
2ρACd (Φ)∥vrel∥2d,

fthrust = − 1
2ρACt (Φ)∥vrel∥2n, (6)

where A is the area of the surface triangle, ρ is the density of fluid,
which is approximately 1000kд/m3 for water, vrel = vwater − 1

3 (v0 +
v1 + v2) is the surface velocity relative to the fluid (See figure 2).
We omit the index of the surface for simplification. d = vrel

∥vrel ∥
and

n are the direction of the surface velocity and the surface normal,
respectively.Cd (Φ) andCt (Φ) are coefficients, which depend on the
angle of attack Φ = π

2 − cos−1(n · vrel). The coefficient plot of the
drag force is symmetric, while the coefficient plot of the thrust force
is asymmetric. We lump all the drag and thrust forces on the surface
into a single vector fext = fhydro.

3.1 Muscular Hydrostat Anatomy
The core of the FEM simulation is designing material property. Sim-
ulating muscular hydrostats requires appropriate material models
according to their functional roles. The background elasticity is a
fundamental component that preserves the original shape as close
as possible. This elasticity is passive and independent of muscle
excitation. On top of background elasticity, the contraction and
relaxation of muscle fibers generate internal force.

ACM Trans. Graph., Vol. 38, No. 6, Article 208. Publication date: November 2019.

208:4 • Min et. al

Fig. 2. Simplified Hydrodynamics. (Left) The drag and thrust forces. (Right) The triangles on the curved surface of the swimming stingray are colored by the
angle of attack.

Background Elasticity. We choose a corotational elastic strain
energy model for background elasticity.

Ψpassive(F) =
kp

2
∥F − R∥2 (7)

where F = UΣV⊤ is the deformation gradient of the element, and
R = UV⊤ is rotational part of the deformation gradient. In the
formulation of projective dynamics, Ai maps the nodal position q to
the deformation gradient F, and pi ∈ SO(3) is the projection of the
deformation gradient onto the rigid transformation of the rest shape.
The element-wise volume preservation energy model projects the
deformation gradient to the manifold

{
D ∈ R3×3 | det(D) = 1

}
.

Ψvolume(F) =
kv
2
∥F − D∥2 (8)

where D = UΣ∗V⊤, and det(Σ∗) = 1. We find D using constrained
quadratic programming.We refer to the work of Bouaziz et al. [2014]
for the details on the relevant algebra.

Muscle fibers and cords. The anatomy of the soft-bodied arm com-
prises several muscle groups with numerous muscle fibers. Physio-
logically, muscles contract and relax along the direction of muscle
fibers. We approximate a continuum of aligned muscle fibers by
FEM mesh elements (either tetrahedrons or triangles) and a nerve
cord. The muscle excitation signal u travels through the nerve cord,
which is discretized into a sequence of segments ui , and activates
nearby FEM elements within a user-specified radius. (See Figure 3)
The activated element contracts along the direction of the nearest
cord segment. The level of activation of element e is inversely pro-
portional to the distance to the cord l , which can be formulated as
e = uiexp(−σl). The contraction of an FEM element generates inter-
nal force fmuscle(e) = −∇Emuscle, where Emuscle is a muscle energy
model, which depends on the type of muscle fibers. We consider
two types, contractile and bending. The muscle excitation model will
be discussed in the next section.

Contractile fibers. The contractile muscle generates anisotropic
muscle force fmuscle(e) = −fmuscle(e)m where m is the muscle fiber
direction. To generate such an anisotropic muscle force fmuscle(e),
we adopt a strain energy model Emuscle = VmuscleΨmuscle [Lee et al.
2018].

Ψmuscle(F, e) =
km
2

∥(1 − r)Fm∥2 (9)

Fig. 3. The nerve cord delivers muscle excitation signal u through muscle
fibers approximated by FEM elements. The activated elements are shown
in red.

where km is muscle stiffness, e ∈ [0, 1] is the level of activation,
r = (1 − e)/l is the projection of the cord segment. The energy
model results in linear force fmuscle(e) = −k(l − (1 − e)) with a
muscle stretch factor l = ∥Fm∥. From the viewpoint of projective
dynamics, r is the projection of the contraction axis given activation
e . The global solver balances background elasticity and contractile
muscle forces by solving a quadratic optimization problem.

Bending Fibers. Some of the underwater soft-bodied animals have
thin body parts such as fins. The whole body of some underwater
animals is too thin to model with tetrahedral meshes. Simulating
such thin structures with tetrahedral meshes could suffer from an
instability issue stemming from the material-space singularity. In-
stead, we rather utilize a thin-shell model that is actuated by bending
muscles. In nature, all muscles produce force by contraction. We
consider an imaginary type of muscles that produce force by bend-
ing. Bending muscles take a signed excitation signal and the sign
indicates the direction of bending. Simulating two-dimensional thin-
shells in three-dimensional space requires an energy term on the
bending phenomenon. We follow the one-ring bending energy pro-
posed by [Nealen et al. 2006], which uses isotropic deformation
represented by the Laplace-Beltrami operator for each edge.

Ψbending(q0, q1, q2, q3, e) =
kb
2
∥Xc − RX̃(e)c∥2 (10)

ACM Trans. Graph., Vol. 38, No. 6, Article 208. Publication date: November 2019.

SoftCon: Simulation and Control of Soft-Bodied Animals with Biomimetic Actuators • 208:5

where q0 and q1 are vertices constituting an edge and q2 and q3
are its adjacent vertices. X = (q0, q1, q2, q3) ∈ R3×4 is the current
position matrix, X̃(e) is the rest position matrix deformed by acti-
vation e ∈ [−1, 1], and c is a set of cotangent weights for the edge.
R ∈ SO(3) is a projection such that rotating X̃(e)c by R best matches
to X(q)c. We detail on how activation e updates the rest shape in
the Appendix.

3.2 Muscle Excitation Model
We can consider several different models for muscle excitation. The
simplest model assumes that all excitation signals on the segments
are independent. We call it Independent Muscle Excitation Model
(I-MEM). Although I-MEM allows for maximal flexibility in move-
ments and provides the largest degrees of freedom in control, the
high-dimensionality of control is a big obstacle for learning motor
skills. The direct opposite model to I-MEM assumes that all segments
on the entire length of the nerve cord share the same excitation
signal. We call it Shared Muscle Excitation Model (S-MEM). Though
this model coordinates muscle movements in a structured manner,
the model is too simple to reproduce complex behaviors. An alter-
native to these two extremes is a Central Pattern Generator model
(CPG-MEM), which produces cyclic excitation signals from the cen-
tral nervous system and propagates the signal to peripherals. This
model has been popular in computer graphics and robotics because
it produces wiggling patterns that look biological [Si et al. 2014; Tian
and Lu 2015]. In this model, the central nervous system takes full
control over the movements and it modulates the central patterns to
change the direction and speed in a strongly-structure manner. We
present a new biomimetic muscle excitation model, which we call
Adaptive Propagation Muscle Excitation Model (AP-MEM), inspired
by signal delivery in muscular hydrostats.

Our model is based on two key observations that can be found in
the biology literature. It has been observed from octopuses that ner-
vous signals are produced not only at the brain but also at any part
of the limb, as evidenced by amputated octopus arms. The central
nervous signals originated from the brain are actively modulated in
the peripheral [Levy and Hochner 2017; Richter et al. 2015]. Central
nerve signals act as high-level commands from the brain, and the
signals are modulated and adjusted to perform skilled control and
manipulation. It has also been noted that the speed of neural signal
transmission varies in the movement of organisms [Hochner 2012].
The careful modulation of signal propagation speed is as important
as signal amplitude modulation. Our AP-MEM is a simple model
that satisfies these observations. The AP-MEM is also equipped with
a central pattern generator that produces central excitation signals,
which are adapted dynamically while propagating to peripherals.

Central Pattern Generator. The various forms of cyclic patterns
have been studied and exploited in the composition of center ner-
vous signals. We choose the simple triangular wave function as
initial central pattern which is good enough to control all the ani-
mals in our examples (see Figure 4). The triangular wave function
with range θ2 and period t ∈ [0,θ1] is

TW (t |θ1,θ2) =
θ2
2

[4
θ1

(
t −

θ1
4

−
θ1
2

⌊ 2t
θ1

⌋)
(−1)

⌊
2t
θ1

⌋
+ 1

]
, (11)

Fig. 4. Triangular central nerve signals at the top propagate through nerve
cords when propagation parameters (α, β, κ) are constant.

where ⌊·⌋ is the floor function. If the triangular signal occurs repeat-
edly at the interval θ3 ≥ θ1, the central pattern is defined by

µ(t |θ1,θ2,θ3) =

{
TW (t ;θ1,θ2), if t ∈ [0,θ1]
0, if t ∈ (θ1,θ3].

(12)

The presence of delay (θ3 − θ1) between excitation signals pro-
duces a mixture of movement and holding as shown in energetic
thrusts in octopus swimming and highly curved S-shapes of ribbon
eels.

Adaptive Propagation. The propagation operator delivers excita-
tion signals, ui , along with nerve cord segments where i = 0, 1, · · ·
indexes segments from proximal to distal. While propagating, the
signal ui is modulated spatially by parameters α and β , and tempo-
rally by parameter κ when the central signal µ is given to proximal
to the muscle cord.

ui (t + 1) =

{
µ(t), if i = 0
αui−1(t) + βui (t), otherwise,

(13)

The attenuation factor β determines how much the current level
of excitation will remain at the next time. The delivery factor α
determines how much excitation will be propagated to the next
segment. We repeat this step κ times at every control time step to
modulate the speed of the propagation process. The propagation
operator at time t is defined by

u(t + 1) = Pκu(t) =



0 0 0 . . . 0 µ
α β 0 . . . 0 0
0 α β . . . 0 0
...
...
...
. . .

...
...

0 0 0 . . . α β
0 0 0 . . . 0 1



κ 

u1(t)
u2(t)
u3(t)
...

uN (t)
1


(14)

where P is a propagation matrix, and N is the number of the seg-
ments. If the parameters α , β and κ are constant over time, our

ACM Trans. Graph., Vol. 38, No. 6, Article 208. Publication date: November 2019.

208:6 • Min et. al

Fig. 5. Dynamics sdyn, task stask, and excitation sext states. (Left) The
positions of selected vertices are colored in yellow and the blue arrows are
their velocities. (Middle) The green and red arrows are the target velocity and
average velocity of the character, respectively. (Right) The current excitation
pattern is colored in pink.

model generates stationary CPG-MEM signals, whereas it modu-
lates the central patterns µ(t) to control the full-body movements if
the parameters change. Learning a CPG-MEM controller is computa-
tionally demanding because the action originating at the beginning
of the nerve cord can be evaluated at the end of the propagation. The
occurrence of an action and its evaluation are distant spatially and
temporally. Our AP-MEM takes a different approach to modulating
the propagation parameters to add flexibility and controllability in
the middle of a long muscle. We found that our AP-MEM better
suits for policy learning in the next section.

4 CONTROLLER LEARNING
In reinforcement learning (RL), an agent (a soft-bodied animal in
our study) in state s takes action a, and its state changes to s′ with
transition probability P(s, a, s′) ∈ [0, 1]. RL assumes the Markov
property, meaning that the transition probability depends only on
the current state. The agent receives a scalar-valued reward r =
R(s, a, s′) in the transition proportional to the desirability of the
transition. The initial state s0 of the agent is chosen from initial
state probability ρ(s0). The state changes sequentially by taking
actions until it meets a termination condition (e.g., time limit and
failure detection of the given task). The sum of discounted rewards
collected during this process is called a return G(s0) = r0 + γr1 +
γ 2r2 + γ 3r3 + · · · , where γ ∈ [0, 1) is a discount factor that makes
the sum finite. The goal of reinforcement learning is to find a policy
(a.k.a. controller) that maximizes the expected value of the return
given the initial state distribution.
The state s = (sdyn, stask, sexc) is composed of the dynamical

state, task-specific state, and the excitation state (See Figure 5). The
dynamical state sdyn = (x, Ûx) includes vertex positions x and their
velocities Ûx of the FEM mesh. We found that it is not necessary to
include all vertices in the state, but we randomly select k vertices
(n ≫ k) near the nerve cords. The positions and velocities are
represented in a local, moving coordinate system attached to the
animal’s body. The task state stask gives the information of user-
provided goals where we use the target velocity represented in
the local coordinate system for underwater locomotion. sexc is the
current excitation pattern u(t). The user provides with central nerve
signals µ0(t) parameterized by (θ1,θ2,θ3), and the initial values of
propagation parameters (α0, β0,κ0) for each individual nerve cord j .
The action is the modulation of the central pattern and propagation

parameters. The actual parameters at muscle j are

µ = µ0(t) + ∆µ, α = α0 + ∆α , β = β0 + ∆β , κ = κ0 + ∆κ, (15)

when action (∆µ,∆α ,∆β ,∆κ) is applied.
The reward for the underwater navigation task encourages the

agent to move along the target velocity.

R = w1exp
(
− σ1∥vd −v ∥

)
+w2exp

(
− σ2∥dd − d∥2

)
+w3exp

(
− σ3∥θup∥

)
+ rtask.

(16)

where vd = ∥vd∥ ∈ R and dd =
vd
vd

∈ S2, respectively, are the
length, v is the average body velocity during 1 s. and the direction
of the target velocity vd ∈ R3 and θup ∈ R is the angle between
the up vector and the global upward direction. rtask depends on the
choice of task objectives.
Our policy and value functions are deep networks with three

fully connected layers with 128 units for each layer. The internal
layers use tanh units for non-linear activation and the last layer
uses linear activation units. We adopt Proximal Policy Optimization
(PPO) to directly minimize expected returns through stochastic
gradient descent [Schulman et al. 2017].

5 EXPERIMENTAL RESULT
Our implementation of the FEM simulation largely follows the tuto-
rial provided by Sifakis and Barbic [2012] and the work of Bouaziz
et al. [2014]. For FEM mesh generation, we used TetWild [Hu et al.
2018] for 3D tetrahedralization and Delaunay triangulation for thin
plates. We typically generate meshes with 400 to 1000 vertices as
a trade-off between computational costs and motor functionality
(See Table 1). Each nerve cord is divided into 50 segments, which
provide a lot of control freedom. The degrees of simulation freedom
proportional to the number of vertices is much larger than its con-
trol freedom. Muscle routings are specified by Bézier splines. The
segments of nerve cords are assigned to tetrahedra by computing
triangle-spline intersections.

Since the whole body of our animal model is soft, the local coor-
dinate system attached to the body can be noisy or wiggly under
the influence of muscle activation. We pick C ≥ 4 vertices to attach
the coordinate system as far away as possible from muscles (e.g., in
the head). The local coordinate system (Rlocal, blocal) is determined
by solving a minimization problem.

min
(R,b)∈SO (3)×R3

∥X − (RX̃ + b)∥2 (17)

where X, X̃ ∈ R3×C are matrices horizontally stacking the vertices
of deformed and material space positions, respectively, while activat-
ing muscles by central patterns. This minimization problem can be
solved analytically using singular value decomposition. Increasing
the Young’s modulus around the coordinate system is also helpful
in stabilizing the coordinate system.

Our learning algorithm is episodic. It learns a control policy from
many simulation episodes. The initial state s0 of each simulation
episode is picked randomly from the pool of states in previous

ACM Trans. Graph., Vol. 38, No. 6, Article 208. Publication date: November 2019.

SoftCon: Simulation and Control of Soft-Bodied Animals with Biomimetic Actuators • 208:7

Table 1. Simulation model data

Lamprey Starfish Octopus Stingray Cuttlefish

of muscles 4 8 32 2 22

of Total 3702 4634 4026 4895 4894
force Passive 1114 1049 2160 2394 1379

actuators Muscle 2588 3585 1866 2501 3515

of simulation DoF 1209 1215 2931 1794 3288

of contour 716 724 1758 997 1470

Muscle stiffness (km) 1.0e6 1.0e6 5.0e5 1.0e5 1.0e5

Young’s modulus (kp) 1.0e6 1.0e6 2.0e6 2.0e6 2.0e6

Volume Preservation (kv) 1.0e5 2.0e5 1.0e5 2.0e5 2.0e5

Table 2. Simulation and learning parameters

Simulation Learning

Simulation Hz 240 Policy/Value learning rate 1.0e−5

Control Hz 30 Discount factor (γ) 0.95

Max iterations 10 GAE and TD (λ) 0.95

Damping coeff. 0.9999 # of tuples per policy update 512

Batch size for policy update 64
Iteration for policy update 10

Maximum time horizon (sec) 10
Clip parameter (ϵ) 0.2

episodes. We also adopt an early termination strategy [Peng et al.
2018a] to prune unsuccessful trials. We used the implementation
of Proximal Policy Optimization in OpenAI baselines [Dhariwal
et al. 2017], where deep network operations are performed by Ten-
sorFlow [TensorFlow 2015]. Table 2 shows all parameters used in
our implementation. Since the dynamics simulation is the bottle-
neck of the overall computation, all computations were done on
CPU without utilizing GPU acceleration. We use i7-7700 CPUs to
generate simulation episodes accelerated by multi-threading. The
training requires approximately 4 to 48 hours depending on the
number of muscles and tetrahedra and the simulation time step.
The low-dimensional, low-energy locomotion for the stingray takes
4 hours, whereas the high-dimensional octopus requires 48 hours
until its learning curve plateaus on a single PC. The implementation
code is available at https://github.com/seiing/SoftCon.

5.1 Animal Models
The lamprey has an eel-like body without backbones. Our lamprey
model has four longitudinal muscles along the body (see Figure 6
and Table 1). Tetrahedralization of this simple, long body produces a
large dynamics system with 1209 degrees of freedom and 3702 force
actuators (passive and muscle). Many degrees of freedom along the
continuum of muscle fibers allow the lamprey to bend, tilt, and
twist the body about an arbitrary direction. It is possible for the

DRL algorithm to learn the locomotion of the lamprey from scratch
without any information about muscle excitation patterns. However,
the resulting motions would look unpredictable and undesirable. In
order to achieve the appearance of structured, biological swimming
motions, we provided with central nerve signals that activate two
muscles on the left and the other two muscles on the right alterna-
tively. The control policy learns to actuate muscles as agonists and
their antagonists and thus produces horizontal wiggling as expected.

The starfish is an imaginary soft-bodied animal having four legs
that spread out symmetrically. This X-shape animal has also been
used in the previous studies [Pan andManocha 2018; Tan et al. 2012].
Each arm of the starfish includes two longitudinal muscles, which
act as an agonist and antagonist pair to produce oscillatory swing
patterns. The starfish is the simplest example that learns to swim in
a few hours.

Our octopusmodel has eight arms. Each arm has two longitudinal,
one transverse, and one oblique muscle (see Figure 8). The agonist
and antagonist pair of longitudinal muscles bend and swing the arm.
The longitudinal muscles play a primary role in the underwater
navigation task. The transverse muscles squeeze the soft tissues and
the volume preservation of the soft tissues has the arm stretched.
Typical reach movements of the octopus make use of transverse
muscles to have its arm stretched. The oblique muscle twists the
arm. The octopus anatomy has muscle fibers aligning along a spiral
in one direction. The simulated octopus can swim by orchestrating
24 muscles harmoniously and steer the moving direction rapidly
and fluidly. Figure 9 shows the muscle excitation patterns when the
octopus makes a rapid turn.
The octopus often hides its body in a safe zone such as an aban-

doned bottle or a narrow valley. We consciously create such an
environment (see Figure 7). Collision detection and response is a
key technical component that simulates the soft-bodied animal in a
cramped environment. Simply pushing the nodal positions that in-
terpenetrate obstacles to collision-free space can avoid the collision.
At every iteration of the dynamics simulation, we check all nodal
positions whether they are colliding using a Triangle-Triangle inter-
section algorithm and compute their collision-free space projection.
All interpenetrating nodes are projected into the collision-free space
after solving the global step.

The Bottle Escape scenario starts with the octopus in a bottle. We
begin with a swimming policy network learned in free space as an
initial guess. The target velocity is set to aim at the entrance of the
bottle. Interestingly, the octopus learned to squeeze out of the bottle
in only a few iterations. We suspect that the free-space swimming
policy is already good enough to push the body forward even when
the body is jammed in the narrow passage. In the Narrow Valley
example, we planed the trajectory using Bézier splines. The subject
computes the target velocity at every time step to track the plan
by computing the closest points on the spline. This example does
not require re-training of the control policy since the free-space
swimming policy manages to navigate through narrow passages
while coping with the curved trajectory and repeated collisions.

The stingray has a thin, wide body, which is modeled as a thin
plate of deformable tissues. The bending-type muscles embedded in
the thin plate has a zigzag shape along the side fins imitating the

ACM Trans. Graph., Vol. 38, No. 6, Article 208. Publication date: November 2019.

208:8 • Min et. al

Fig. 6. The FEM meshes and nerve cords of assorted soft-bodied animals. (From left to right) Lamprey, starfish, octopus, stingray and cuttlefish.

Fig. 7. The animals in cramped environments. (Left to Right) The octopus escaping the bottle, the octopus swimming through a narrow valley, and the ribbon
eels passing through obstacles.

ACM Trans. Graph., Vol. 38, No. 6, Article 208. Publication date: November 2019.

SoftCon: Simulation and Control of Soft-Bodied Animals with Biomimetic Actuators • 208:9

Fig. 8. Octopus arms. The contraction of longitudinal, transverse and
oblique muscles respectively bend, lengthen and twist the arm.

Fig. 9. The octopus turning. The longitudinal muscle inside the arm shown
in green plays a role in making forward thrusts, while another longitudinal
muscle outside the arm shown in pink plays an opposite role in recovering
the arm position for the next thrust and making backward thrusts to brake.
The octopus makes strong thrusts with the arms outside of turning and
brakes with the arms inside to change its moving direction rapidly.

anatomy of stingrays [Park et al. 2016]. Propagating muscle excita-
tion signals through the zigzag muscles produce wavy, fluttering
movements of soft fins. We also created a variety of imaginary, thin-
shell animals actuated by various muscles and their embeddings.

The Cuttlefish has a volumetric body with ten short arms and thin
fins on both sides of the body. It has two longitudinal contractile
muscles in each arm and a bending muscle in each fin. It can move
forward slowly by fluttering the fins. The arms can make additional
thrusts to move faster.

5.2 Comparison of Muscle Excitation Models
We compared the effectiveness of our AP-MEM with alternative
models including I-MEM, S-MEM andCPG-MEM (See figure 10). The
free-space swimming policies for the lamprey, the starfish and the
octopus are learned with different MEMs and we compared their av-
erage returns and learning time. The I-MEM policies achieved high
average returns for simple animals (the lamprey and the starfish),

AP-MEM I-MEM S-MEM CPG-MEM

Lamprey 798.98 3655.67 937.25 29.39
(time) 19 350 45 47.85
Starfish 1684.5 1809.34 146.43 40.22
(time) 6 202 22 47.85

Octopus 1503.55 8.56 15.05 N/A
(time) 47 156 57 N/A

Fig. 10. Comparison of MEMs. The average return of the free-space swim-
ming task and the learning time (hours) are compared.

implying that the I-MEM policies perform well in respect to achiev-
ing a task-driven goal. However, the I-MEM policies produce noisy,
unstructured movements that do not appear biological. The average
return is probably good at measuring the performance of a policy,
but certainly poor at evaluating the quality of movements. Learn-
ing an I-MEM policy is slow because of its excessive degrees of
freedom in control. The CPG-MEM policies produce more struc-
tured, better-looking movements than the I-MEM policies. Even
with fewer degrees of freedom, learning a CPG-MEM policy for
the octopus is much slower than learning an I-MEM policy. The

ACM Trans. Graph., Vol. 38, No. 6, Article 208. Publication date: November 2019.

208:10 • Min et. al

CPG-MEM policy for the octopus is not robust even after two weeks
of learning in our experiments. The computational cost for policy
learning is not proportional to the degrees of freedom, the number
of FEM elements, and the number of muscle actuators. There are
qualitative factors, such as the structural complexity of the body
and muscles, that affect more than the numbers. Our AP-MEM poli-
cies out-perform all alternatives by a large margin in regards to
both computational efficiency and the quality of movements. The
advantages of AP-MEM is more prominent when the model is more
complex.

5.3 Interactive User Interface
We implemented a user interface system that allows the user to
design his/her own creatures easily (see Figure 11). Our user inter-
face system currently supports the creation of an animal with its
thin-plate body. The interactive design of volumetric bodies is a
subject for future research.
The user interface system has two stages: modeling stage and

simulation stage. In the modeling stage, the user can draw the con-
tour of the animal and the routes of muscles. The system generates
a triangle FEM mesh via Delaunay triangulization of the contour
and embeds the nerve cords into the triangle mesh by computing
the intersection between nerve cords and triangles. In the simu-
lation stage, the user specifies the initial values of central nerve
signals (θ1,θ2,θ3) and propagation parameters (α0, β0,κ0) for each
muscle, while visualizing the body deformation in simulation. At
this stage, we disable hydrodynamic forces to focus on visualizing
the effect of central nerve signals and their propagation. Once the
parameter setting is finished, the new animal model goes through
the learning phase to learn its control policy under the influence of
hydrodynamics.

6 DISCUSSION
We presented a framework for modeling, simulation, and control
of soft-bodied animals with biomimetic actuators. The key to the
success of our approach is our muscle excitation model that makes a
good balance between simplicity vs. generalization capability, struc-
ture vs. flexibility, and low control dimensionality vs. high modeling
dimensionality. The DRL algorithm equipped with our AP-MEM can
cope with the complexity of deformable soft bodies, a continuum of
muscle fibers, and impressive numbers of DoFs and discretized mus-
cle actuators. The increased dimensionality and model complexity
have been successfully translated into smooth, flexible movements
that appear biological. We envision the framework in which accu-
rate biomechanical models may be applied to truly accurate motions
for animals alive, extinct, or imaginary.

The interactive performance of our system is largely attributed to
projective dynamics and deep reinforcement learning. The runtime
simulation on a typical desktop PC is 3 to 5 times slower than real-
time if self-collision is not considered in the simulation. Collision
detection and response are notorious computational bottlenecks of
deformable body simulation. Although our method is much faster
than previous systems for soft-bodied animal simulation, there is
room for performance improvements. One possibility is the im-
plicit handling of hydrodynamic forces, which will lead to a full

implicit integration method that allows for larger time steps and
unconditional stability.
Even though successful applications of AP-MEMs have been

demonstrated so far, our framework also has numerous limitations.
Underwater soft-bodied animals in nature have an alternative mech-
anism to move, which we are currently unable to reproduce with the
simplified hydrodynamics model. For example, the octopus draws
water into its body cavity and spurts the water out to generate thrust.
A more sophisticated hydrodynamics model, which can simulate
the incompressibility of fluids, is crucial to reproduce such behavior.
Our animal models lack a lot of important anatomical features. The
octopus has membranes between legs to push the water off and uses
suckers for grabbing and holding prey. We have not implemented
such features in our simulation model yet.
The design of body shapes and the embedding of nerve cords

have significant impacts on the motor ability of the learned control
policy. We designed our animal models based on similar creatures in
nature and we often found that small tweaking of the body shapes
and muscle embedding substantially affect the level of motor abil-
ity and the type of motor skills the control policy can achieve. An
intriguing direction for future research is to learn the most effi-
cient body shape, muscle embedding, and motion for an animal
simultaneously [Geijtenbeek et al. 2013; Ha et al. 2017].

ACKNOWLEDGMENTS
This research was supported by the MSIT(Ministry of Science and
ICT), Korea, under the SW Starlab support program(IITP-2017-0-
00878) supervised by the IITP(Institute for Information & communi-
cations Technology Promotion).

REFERENCES
David Baraff and Andrew Witkin. 1998. Large Steps in Cloth Simulation. In Proceedings

of the 25th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’98). 43–54.

Jernej Barbič, Marco da Silva, and Jovan Popović. 2009. Deformable Object Animation
Using Reduced Optimal Control. ACM Trans. Graph. 28, 3, Article 53 (2009).

Jernej Barbič and Jovan Popović. 2008. Real-time Control of Physically Based Simula-
tions Using Gentle Forces. ACM Trans. Graph. 27, 5, Article 163 (2008).

James M. Bern, Kai-Hung Chang, and Stelian Coros. 2017. Interactive Design of Ani-
mated Plushies. ACM Trans. Graph. 36, 4, Article 80 (2017).

Sofien Bouaziz, Sebastian Martin, Tiantian Liu, Ladislav Kavan, and Mark Pauly. 2014.
Projective Dynamics: Fusing Constraint Projections for Fast Simulation. ACM Trans.
Graph. 32, 6, Article 154 (2014).

Christopher Brandt, Elmar Eisemann, and Klaus Hildebrandt. 2018. Hyper-reduced
Projective Dynamics. ACM Trans. Graph. 37, 4, Article 80 (2018).

Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2010. Generalized Biped
Walking Control. ACM Trans. Graph. 29, 4, Article 130 (2010).

Stelian Coros, Andrej Karpathy, Ben Jones, Lionel Reveret, and Michiel van de Panne.
2011. Locomotion Skills for Simulated Quadrupeds. ACM Trans. Graph. 30, 4, Article
59 (2011).

Stelian Coros, Sebastian Martin, Bernhard Thomaszewski, Christian Schumacher,
Robert Sumner, and Markus Gross. 2012. Deformable Objects Alive! ACM Trans.
Graph. 31, 4, Article 69 (2012).

Marco da Silva, Yeuhi Abe, and Jovan Popović. 2008. Interactive Simulation of Stylized
Human Locomotion. ACM Trans. Graph. 27, 3, Article 82 (2008).

Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert,
Alec Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. 2017.
OpenAI Baselines. https://github.com/openai/baselines. (2017).

Ye Fan, Joshua Litven, and Dinesh K. Pai. 2014. Active Volumetric Musculoskeletal
Systems. ACM Trans. Graph. 33, 4, Article 152 (2014).

Jingyi Fang, Chenfanfu Jiang, and Demetri Terzopoulos. 2013. Modeling and Animating
Myriapoda: A Real-time Kinematic/Dynamic Approach. In Proceedings of the 12th
ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA ’13). 203–
212.

ACM Trans. Graph., Vol. 38, No. 6, Article 208. Publication date: November 2019.

SoftCon: Simulation and Control of Soft-Bodied Animals with Biomimetic Actuators • 208:11

Fig. 11. The pipeline of animal model design.

Thomas Geijtenbeek, Michiel van de Panne, and A. Frank van der Stappen. 2013. Flexible
Muscle-based Locomotion for Bipedal Creatures. ACM Trans. Graph. 32, 6, Article
206 (2013).

Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey Hinton. 1998. NeuroAnimator:
Fast Neural Network Emulation and Control of Physics-based Models. In Proceedings
of the 25th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’98). 9–20.

Sehoon Ha, Stelian Coros, Alexander Alspach, Joohyung Kim, and Katsu Yamane.
2017. Joint Optimization of Robot Design and Motion Parameters using the Implicit
Function Theorem. In Robotics: Science and Systems.

Binyamin Hochner. 2012. An Embodied View of Octopus Neurobiology. Current Biology
22, 20 (2012), R887 – R892.

Jessica K. Hodgins, Wayne L. Wooten, David C. Brogan, and James F. O’Brien. 1995. An-
imating Human Athletics. In Proceedings of the 22nd Annual Conference on Computer
Graphics and Interactive Techniques. 71–78.

Yixin Hu, Qingnan Zhou, Xifeng Gao, Alec Jacobson, Denis Zorin, and Daniele Panozzo.
2018. Tetrahedral Meshing in the Wild. ACM Trans. Graph. 37, 4, Article 60 (2018).

Takashi Ijiri, Kenshi Takayama, Hideo Yokota, and Takeo Igarashi. 2009. ProcDef:
Local-to-global Deformation for Skeleton-free Character Animation. Computer
Graphics Forum (proceedings of Pacific Graphics) 28, 7 (2009), 1821–1828.

Eunjung Ju, Jungdam Won, Jehee Lee, Byungkuk Choi, Junyong Noh, and Min Gyu
Choi. 2013. Data-driven Control of Flapping Flight. ACM Trans. Graph. 32, 5, Article
151 (2013).

Junggon Kim and Nancy S. Pollard. 2011. Fast Simulation of Skeleton-driven Deformable
Body Characters. ACM Trans. Graph. 30, 5, Article 121 (2011).

Cecilia Laschi, Matteo Cianchetti, Barbara Mazzolai, Laura Margheri, Maurizio Follador,
and Paolo Dario. 2012. Soft Robot Arm Inspired by the Octopus. Advanced Robotics
26, 7 (2012), 709–727.

Joseph Laszlo, Michiel van de Panne, and Eugene Fiume. 1996. Limit Cycle Control and
Its Application to the Animation of Balancing and Walking. In Proceedings of the
23rd Annual Conference on Computer Graphics and Interactive Techniques. 155–162.

Seunghwan Lee, Ri Yu, Jungnam Park, Mridul Aanjaneya, Eftychios Sifakis, and Jehee
Lee. 2018. Dexterous Manipulation and Control with Volumetric Muscles. ACM
Trans. Graph. 37, 4, Article 57 (2018).

Yoonsang Lee, Moon Seok Park, Taesoo Kwon, and Jehee Lee. 2014. Locomotion Control
for Many-muscle Humanoids. ACM Trans. Graph. 33, 6, Article 218 (2014).

Guy Levy and Binyamin Hochner. 2017. Embodied organization of Octopus vulgaris
morphology, vision, and locomotion. Frontiers in physiology 8 (2017), 164.

Libin Liu and Jessica Hodgins. 2018. Learning Basketball Dribbling Skills Using Tra-
jectory Optimization and Deep Reinforcement Learning. ACM Trans. Graph. 37, 4,
Article 142 (2018).

Libin Liu, Michiel Van De Panne, and Kangkang Yin. 2016. Guided Learning of Control
Graphs for Physics-Based Characters. ACM Trans. Graph. 35, 3, Article 29 (2016).

Tiantian Liu, Adam W. Bargteil, James F. O’Brien, and Ladislav Kavan. 2013. Fast
Simulation of Mass-spring Systems. ACM Trans. Graph., Article 214 (2013).

Sebastian Martin, Bernhard Thomaszewski, Eitan Grinspun, and Markus Gross. 2011.
Example-based Elastic Materials. ACM Trans. Graph. 30, 4, Article 72 (2011).

Matthias Müller, Bruno Heidelberger, Marcus Hennix, and John Ratcliff. 2007. Position
Based Dynamics. Journal of Visual Communication and Image Representation 18, 2
(2007), 109–118.

Andrew Nealen, Matthias Müller, Richard Keiser, Eddy Boxerman, and Mark Carlson.
2006. Physically based deformable models in computer graphics. Computer Graphics
Forum 25, 4 (2006), 809–836.

Zherong Pan and Dinesh Manocha. 2018. Active Animations of Reduced Deformable
Models with Environment Interactions. ACM Trans. Graph. 37, 3, Article 36 (2018).

Sung-Jin Park, Mattia Gazzola, Kyung Soo Park, Shirley Park, Valentina Di Santo, Erin L.
Blevins, Johan U. Lind, Patrick H. Campbell, Stephanie Dauth, Andrew K. Capulli,
Francesco S. Pasqualini, Seungkuk Ahn, Alexander Cho, Hongyan Yuan, Ben M.
Maoz, Ragu Vijaykumar, Jeong-Woo Choi, Karl Deisseroth, George V. Lauder, L.
Mahadevan, and Kevin Kit Parker. 2016. Phototactic guidance of a tissue-engineered
soft-robotic ray. Science 353, 6295 (2016), 158–162.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, and Michiel van de Panne. 2018a. Deep-
Mimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character
Skills. ACM Trans. Graph. 37, 4, Article 143 (2018).

Xue Bin Peng, Glen Berseth, and Michiel van de Panne. 2016. Terrain-adaptive Loco-
motion Skills Using Deep Reinforcement Learning. ACM Trans. Graph. 35, 4, Article
81 (2016).

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne. 2017. DeepLoco:
Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning. ACM
Trans. Graph. 36, 4, Article 41 (2017).

Xue Bin Peng, Angjoo Kanazawa, Jitendra Malik, Pieter Abbeel, and Sergey Levine.
2018b. SFV: Reinforcement Learning of Physical Skills from Videos. ACM Trans.
Graph. 37, 6, Article 178 (2018).

Jonas N Richter, Binyamin Hochner, and Michael J Kuba. 2015. Octopus armmovements
under constrained conditions: adaptation, modification and plasticity of motor
primitives. Journal of Experimental Biology 218, 7 (2015), 1069–1076.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017.
Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347 (2017).

Christian Schulz, Christoph von Tycowicz, Hans-Peter Seidel, and Klaus Hildebrandt.
2014. Animating Deformable Objects Using Sparse Spacetime Constraints. ACM
Trans. Graph. 33, 4, Article 109 (2014).

Weiguang Si, Sung-Hee Lee, Eftychios Sifakis, and Demetri Terzopoulos. 2014. Realistic
Biomechanical Simulation and Control of Human Swimming. ACM Trans. Graph.
34, 1, Article 10 (2014).

Eftychios Sifakis and Jernej Barbic. 2012. FEM Simulation of 3D Deformable Solids:
A Practitioner’s Guide to Theory, Discretization and Model Reduction. In ACM
SIGGRAPH 2012 Courses (SIGGRAPH ’12). Article 20.

Breannan Smith, Fernando De Goes, and Theodore Kim. 2018. Stable Neo-Hookean
Flesh Simulation. ACM Trans. Graph. 37, 2, Article 12 (2018).

Kwang Won Sok, Manmyung Kim, and Jehee Lee. 2007. Simulating biped behaviors
from human motion data. ACM Trans. Graph. 26, 3, Article 107 (2007).

Jie Tan, Yuting Gu, Greg Turk, and C. Karen Liu. 2011. Articulated swimming creatures.
ACM Trans. Graph. 30, 4, Article 58 (2011).

ACM Trans. Graph., Vol. 38, No. 6, Article 208. Publication date: November 2019.

208:12 • Min et. al

Jie Tan, Greg Turk, and C. Karen Liu. 2012. Soft Body Locomotion. ACM Trans. Graph.
28, 3, Article 26 (2012).

TensorFlow. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems. (2015). http://tensorflow.org/ Software available from tensorflow.org.

Juan Tian and Qiang Lu. 2015. Simulation of Octopus Arm Based on Coupled CPGs. J.
Robot. 2015, Article 4 (2015).

Xiaoyuan Tu and Demetri Terzopoulos. 1994. Artificial Fishes: Physics, Locomotion,
Perception, Behavior. In Proceedings of the 21st Annual Conference on Computer
Graphics and Interactive Techniques (SIGGRAPH ’94). 43–50.

Jack M. Wang, Samuel R. Hamner, Scott L. Delp, and Vladlen Koltun. 2012. Optimizing
Locomotion Controllers Using Biologically-based Actuators and Objectives. ACM
Trans. Graph. 31, 4, Article 25 (2012).

Jungdam Won, Jongho Park, Kwanyu Kim, and Jehee Lee. 2017. How to Train Your
Dragon: Example-guided Control of Flapping Flight. ACM Trans. Graph. 36, 6,
Article 198 (2017).

Jungdam Won, Jungnam Park, and Jehee Lee. 2018. Aerobatics Control of Flying
Creatures via Self-regulated Learning. ACM Trans. Graph. 37, 6, Article 181 (2018).

Jia-chi Wu and Zoran Popović. 2003. Realistic modeling of bird flight animations. ACM
Trans. Graph. 22, 3 (2003), 888–895.

Yuting Ye and C. Karen Liu. 2010. Optimal Feedback Control for Character Animation
Using an Abstract Model. ACM Trans. Graph. 29, 4, Article 74 (2010).

Yoram Yekutieli, German Sumbre, Tamar Flash, and Binyamin Hochner. 2003. How to
move with no rigid skeleton? The octopus has the answers. 49 (2003), 250–4.

KangKang Yin, Kevin Loken, and Michiel van de Panne. 2007. SIMBICON: Simple Biped
Locomotion Control. ACM Trans. Graph. 26, 3, Article 105 (2007).

Wenhao Yu, Greg Turk, and C. Karen Liu. 2018. Learning Symmetric and Low-energy
Locomotion. ACM Trans. Graph. 37, 4, Article 144 (2018).

Appendix A BENDING FIBERS
The bending muscle bends the thin surface according to muscle
activation e , which changes the rest shape X̃(e) in the equation (10).
Given an edge q0q1 and its adjacent vertices q2 and q3, the dihedral
angle θ̃ of the rest shape is

θ̃ = cos−1(n2 · n3) (18)

where n2 =
(q2−q1)×(q1−q0)
∥(q2−q1)×(q1−q0) ∥

and n3 =
(q1−q3)×(q1−q0)
∥(q1−q3)×(q1−q0) ∥

are the
normal vectors of △q0q1q2 and △q0q3q1, respectively. The new
activated shape can be computed by rotating △q0q3q1 about axis
q0q1 by angle (e cosϕ). The coordinate of q∗3 in the new rest shape
is

q∗3(e) = q0 + q∥ + R(ω̂, e cosϕ)q⊥, (19)
where

q∥ =
(q3 − q0) · (q1 − q0)
(q1 − q0) · (q1 − q0)

(q1 − q0),

q⊥ = (q3 − q0) − q∥ ,

ω̂ =
(q1 − q0)
∥q1 − q0∥

.

(20)

ϕ is angle between the fiber direction and the edge and R(ω̂, e cosϕ)
is a rotation matrix. We would like to note that the change of the
rest shape does not affect the projection metric Ai in the equa-
tion (4) since the cotangent weights c remain intact. Given the
new rest shape, the projection pi ∈ SO(3) = UV⊤ can be com-
puted through the singular value decomposition of one-rank matrix
(Xc)(X̃(e)c)⊤ = UΣV⊤.

ACM Trans. Graph., Vol. 38, No. 6, Article 208. Publication date: November 2019.

