
Aerobatics Control of Flying Creatures via Self-Regulated Learning

JUNGDAMWON, Seoul National University, South Korea
JUNGNAM PARK, Seoul National University, South Korea
JEHEE LEE∗, Seoul National University, South Korea

Fig. 1. The imaginary dragon learned to perform aerobatic maneuvers. The dragon is physically simulated in realtime and interactively controllable.

Flying creatures in animated films often perform highly dynamic aerobatic

maneuvers, which require their extreme of exercise capacity and skillful

control. Designing physics-based controllers (a.k.a., control policies) for

aerobatic maneuvers is very challenging because dynamic states remain in

unstable equilibrium most of the time during aerobatics. Recently, Deep Re-

inforcement Learning (DRL) has shown its potential in constructing physics-

based controllers. In this paper, we present a new concept, Self-Regulated
Learning (SRL), which is combined with DRL to address the aerobatics con-

trol problem. The key idea of SRL is to allow the agent to take control over

its own learning using an additional self-regulation policy. The policy allows

the agent to regulate its goals according to the capability of the current con-

trol policy. The control and self-regulation policies are learned jointly along

the progress of learning. Self-regulated learning can be viewed as building its

own curriculum and seeking compromise on the goals. The effectiveness of

our method is demonstrated with physically-simulated creatures performing

aerobatic skills of sharp turning, rapid winding, rolling, soaring, and diving.

CCS Concepts: • Computing methodologies → Animation; Physical
simulation; Reinforcement learning; Neural networks;

Additional KeyWords and Phrases: Character Animation, Physics Simulation,

Physics-based Control, Reinforcement Learning, Deep Learning, Neural

Network, Flying Creature

ACM Reference Format:
Jungdam Won, Jungnam Park, and Jehee Lee. 2018. Aerobatics Control of

Flying Creatures via Self-Regulated Learning. ACM Trans. Graph. 37, 6, Arti-
cle 181 (November 2018), 10 pages. https://doi.org/10.1145/3272127.3275023

∗
Corresponding author

Authors´ addresses: Jungdam Won; Jungnam Park; Jehee Lee, Department of Computer

Science and Engineering, Seoul National University.

© 2018 Association for Computing Machinery.

This is the author’s version of the work. It is posted here for your personal use. Not for

redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3272127.3275023.

1 INTRODUCTION
In animated films, flying creatures such as birds and dragons often

perform highly dynamic flight skills, called aerobatics. The skills

include rapid rotation about three major axes (pitch, yaw, roll), and

a sequence of skills are performed in a consecutive manner to make

dramatic effects. The creature manages to complete aerobatic skills

by using its extreme of exercise capacity and endurance, which

make it attractive and create tension in the audience.

Designing a physics-based controller for aerobatics is very chal-

lenging because it requires extremely skillful control. The creature

remains in unstable equilibrium most of the time during aerobatics.

A bit of perturbation could bring the creature to unrecoverable states.

Control is even more challenging when it performs a sequence of

skills continuously without delay.

Recently, reinforcement learning (RL) with deep neural networks

has shown its potential in constructing physics-based controllers

for character animation [Liu and Hodgins 2017; Peng et al. 2016,

2017; Won et al. 2017]. Given the current state of a character, RL

determines its optimal sequence of actions that maximize the ex-

pected sum of rewards, which indicate the desirability of states and

actions. Defining a reward for taking an action is the primary means

by which the user can influence the control policy. The reward is a

succinct description of the task. The choice of the reward also affects

the performance of the controller and the progress of its learning.

We consider a simple user interface that allows a user to spec-

ify a spatial trajectory. The flying creature tracks the trajectory to

perform aerobatics. Existing RL methods address similar control

problems quite successfully with aerial vehicles if expert demon-

strations are provided or the trajectory curve includes only mild

turns [Abbeel et al. 2010, 2006; Kim et al. 2004]. However, aerobatics

ACM Trans. Graph., Vol. 37, No. 6, Article 181. Publication date: November 2018.

https://doi.org/10.1145/3272127.3275023
https://doi.org/10.1145/3272127.3275023

181:2 • Won et al.

with bird-like articulated wings requires extreme flight maneuvers

and thus poses new challenges for RL approaches.

We present a new concept, Self-Regulated Learning (SRL), which
is combined with deep reinforcement learning (DRL) to address

the aerobatics control problem. We consider a class of problems

in which the main goal can be achieved by generating a sequence

of subgoals and addressing each individual subgoal sequentially.

We found that subgoals naïvely generated from a user-provided

trajectory are often physically unrealizable. A mechanism to sys-

tematically modulate subgoals is crucial for learning aerobatic skills.

The key idea of SRL is to allow the agent to take control over its

own learning using an additional self-regulation policy. The policy

allows the agent to regulate subgoals according to the capability

of the current control policy. The generation of subgoals is closely

related to the reward system of RL. The control and self-regulation

policies are learned jointly along the progress of learning. Learning

self-regulation can be viewed as the process of building its own cur-

riculum or seeking compromise on the subgoals to better achieve the

main goal. SRL improves the performance of a learned control policy

significantly for very challenging aerobatics control problems. We

will demonstrate the effectiveness of our method with physically-

simulated creatures performing aerobatic maneuvers that include a

combination of repeated sharp turns, rapid winding, soaring, and

diving.

2 RELATED WORK
Controller design is an essential component of creating self-actuated

autonomous characters in physically based animation. While com-

puter animation research has mainly focused on simulating biped

locomotion over the past few decades [Coros et al. 2010; da Silva

et al. 2008a; de Lasa et al. 2010; Lee et al. 2010, 2014; Liu et al. 2016;

Mordatch et al. 2012; Peng et al. 2017; Sok et al. 2007; Wang et al.

2012; Ye and Liu 2010; Yin et al. 2007], nonhuman characters have

also been studied including flying creatures [Ju et al. 2013; Won et al.

2017; Wu and Popović 2003], swimming creatures [Grzeszczuk et al.

1998; Tan et al. 2011; Tu and Terzopoulos 1994], quadrupeds [Coros

et al. 2011; Zhang et al. 2018], and various imaginary creatures [Bar-

bič et al. 2009; Coros et al. 2012; Tan et al. 2012]. A diversity of

control methodologies have been explored in computer graphics,

including manually-crafted feedback control laws [Ha et al. 2012;

Lee et al. 2010; Liu et al. 2012; Yin et al. 2007], simplified physical

models (e.g., inverted pendulums) [Kwon and Hodgins 2010, 2017;

Tsai et al. 2009], and data-driven physics simulation [Ju et al. 2013;

Lee et al. 2010; Sok et al. 2007].

Optimality principles played an important role of popularizing op-

timal control theory and nonlinear/non-convex optimization meth-

ods in character animation [Al Borno et al. 2013; Barbič et al. 2009;

Mordatch et al. 2012; Wang et al. 2010, 2012; Wu and Popović 2003;

Ye and Liu 2010]. We can classify control policies (a.k.a., controllers)

depending on how far they look ahead into their future. Immediate

control policy is a direct mapping from states to actions. The ac-

tion at a moment is determined based solely on the current state of

the dynamic system [Ju et al. 2013; Sok et al. 2007]. The capability

to look ahead and predict the future evolution is essential for bal-

ance control and acrobatic maneuvers. Recently, model predictive

control has successfully been applied to simulating human behav-

iors [da Silva et al. 2008b; Hämäläinen et al. 2014, 2015; Han et al.

2016, 2014]. The key concept is to predict the future evolution of

the dynamic system for short time horizon and optimize its con-

trol signals. Model predictive control repeats this prediction and

optimization step while receding the time horizon.

Recently, Deep Reinforcement Learning (DRL) has shown its

potential in simulation and control of virtual characters. DRL for

continuous control (especially actor-critic framework) has advan-

tages of both immediate control and predictive control. The control

policy (actor) is a direct mapping from states to actions, while its

value function (critic) predicts future rewards for the actor. Peng

et al [2016] used a mixture of actor-critic experts to learn terrain-

adaptive locomotion skills of planar bipeds and quadrupeds. In their

subsequent work [Peng et al. 2017], they built a hierarchical network

architecture for three-dimensional bipeds. The high-level network

plans footsteps for a given task, while the low-level network gen-

erates immediate action signals to accomplish the goal given by

the high-level network. Recently, Peng et al [2018] learned various

types of legged locomotion, spin, and kick from example motion

clips. Liu et al [2017] generated a collection of control fragments for

a physics-based character. Each control fragment describes a motor

skill suitable at a specific state of the character. Deep Q-learning

schedules the activation of control fragments to adapt to external

perturbation and user interactions. Won et al [2017] learned con-

trollers for flapping flight of winged creatures using DRL equipped

with evolutionary strategies, which allow rapid exploration of un-

seen states and actions.

While the steady locomotion of humans and animals have been

explored comprehensively, studies on highly dynamic motor skills

are not abundant due to the difficulty of simulation and control.

Ha and his colleagues [2014; 2012] simulated Parkour skills, such

as falling safely from a high position, standing and jumping on a

thin bar, and wall-flipping. Liu et al [2012] demonstrated parame-

terized controllers for Parkour skills, which adapt to different en-

vironment conditions. Borno et al [2013] simulated break-dancing

motions including handstand, handspin, and headspin via trajectory

optimization. Kwon et al [2017] developed a momentum-mapped

inverted pendulum model to describe generalized balancing strate-

gies, and demonstrated the simulation of gymnastic motions such

as high-jumps, handstands, and back-flips.

Self-regulated learning was partly inspired by several ideas from

machine learning literature. The idea of “changeable rewards” comes

from inverse reinforcement learning [Abbeel et al. 2010; Abbeel

and Ng 2004; Fu et al. 2017]. Reward shaping [Ng et al. 1999] is

a technique that modifies the reward function without changing

the corresponding optimal policy by a specific form of transforma-

tion. The goal of SRL is different from either inverse reinforcement

learning or reward shaping. SRL assumes that the reward function

provided initially is not ideal for achieving the main goal and thus

allows the agent to transform the reward function adaptively.

Underlying motivation of SRL is closely related to automatic cur-

riculum generation for RL agents. The sequence of experiences the

agent encounters during learning affect not only the progress of

learning but also the performance of the learned policy. Held et

ACM Trans. Graph., Vol. 37, No. 6, Article 181. Publication date: November 2018.

Aerobatics Control of Flying Creatures via Self-Regulated Learning • 181:3

al [2017] proposed a Generative Adversarial Network (GAN) frame-

work for automatic goal generation. Matiisen el al [2017] proposed

a Partially Observable Markov Decision Process (POMDP) formu-

lation for curriculum generation. Sukhbaatar et al [2017] demon-

strated an intrinsic motivation approach via asymmetric self-play

which uses the internal reward system for the agent. Yu et al [2018]

learned locomotion skills based in DRL and curriculum learning,

which introduces fictional assistive force and gradually relaxes the

assistance according to a scheduled curriculum.

3 ENVIRONMENT AND LEARNING
The aerodynamics of a flying creature entails complex interactions

between its skeleton and wings. In our study, we use a dragon model

similar to the one presented in [Won et al. 2017] except that our

model has a wider range of motion at all joints. The model has an

articulated skeleton of rigid bones and thin-shells attached to the

bones. The skeleton consists of a trunk, two wings, and a tail. The

trunk includes four spinal segments connected by revolute joints.

Each wing includes humerus (upper arms), ulna (lower arms), and

manus (hands). The shoulder, elbow and wrist joints are ball-and-

socket, revolute and universal, respectively. The wings are airfoil-

shaped to generate aerodynamic force, which is the only source of

external force that enables flight. The forces are computed by the

simplified aerodynamics equation and drag and lift coefficients are

manually selected similar to [Wu and Popović 2003].

3.1 Aerobatics Description
An aerobatic maneuver is described by a spatial trajectory C(σ) =
(R(σ),p(σ),h(σ)), where σ ∈ [0, 1] is a progress parameter along the

trajectory, R(σ) ∈ SO(3) and p(σ) ∈ R3
are the desired orientation

and position of the trunk (the root of the skeleton), respectively,

and h(σ) is a clearance threshold. We employ a receding target

model to formulate trajectory tracking control. At every moment,

the creature is provided with a targetC(σ ∗) and the target is cleared
if d(R,p,σ ∗) < h(σ ∗), where R and p are the current orientation

and position, respectively, of the creature’s trunk. The distance is

defined by

d(R,p,σ) = ∥loд(R−1R(σ))∥2F +wp ∥p − p(σ)∥2, (1)

wherewp normalizes the scale of position coordinates. Whenever a

target is cleared, σ ∗ increases to suggest the next target to follow.

Let σ ∗ be the earliest target that has not been cleared yet. The

aerobatic maneuver is completed if the progress reaches the end of

the trajectory, σ ∗ = 1.

Since the linear and angular motions in aerobatics are highly-

coordinated, designing a valid, realizable trajectory is a non-trivial

task. Spline interpolation of key positions and orientations often

generates aerodynamically-unrealizable trajectories. Therefore, we

specify only a positional trajectory p(σ) via spline interpolation

and determine the other terms automatically as follows. Let t(σ) =
Ûp(σ)
∥ Ûp(σ) ∥ be the unit tangent vector and u = [0, 1, 0] be the up-vector
(opposite to the gravity direction). The initial orientation R(0) =
[r⊺x , r

⊺
y , r

⊺
z] ∈ SO(3) is defined by an orthogonal frame such that

rz = t(0), rx = u×rz
∥u×rz ∥ , and ry = rz × rx . The rotation along the

trajectory is

R(σ) = R(σ − ϵ)U
(
t(σ − ϵ), t(σ)

)
, (2)

where ϵ is the unit progress and U ∈ SO(3) is the minimal rotation

between two vectors.

U (a,b) = I + [a × b]× + [a × b]2×
1 − a · b

(a × b)⊺(a × b) . (3)

Here, [v]× is the skew-symmetric cross-product matrix of v . The
clearance threshold h(σ) is relaxed when the trajectory changes

rapidly.

h(σ) = ¯h(1 +wh ∥ Üp(σ)∥) (4)

where
¯h is a default threshold value and wh adjusts the degree of

relaxation. The spatial trajectory thus obtained is twist-free. Twist

motions can further be synthesized over the trajectory.

3.2 Reinforcement Learning
Reinforcement learning (RL) assumes a Markov decision process

(S,A,P(·, ·, ·),R(·, ·, ·),γ) where S is a set of state, A is a set of

actions, P(s,a, s ′) is a state transition probability from state s to
state s ′ after taking action a,R(s,a, s ′) is an immediate scalar reward

after transitioning from s to s ′ due to action a, and γ ∈ [0, 1) is a
discount factor of future rewards. The goal of RL is to find the

optimal policy π∗ : S → A that maximizes the expectation on

cumulative rewards η(π).

η(π) = Es0,a0, · · ·
[∞∑
t=0

γ t rt
]

(5)

where st ∼ P(st−1,at , st), at ∼ π (st), and rt = R(st−1,at , st).
We define the reward function for the receding target model such

that the receding of the target is encouraged and the deviation from

the trajectory is penalized.

R(s,a, s ′) =
{
σ ∗(2 − d (R,p,σ ∗)

dmax
), if d(R,p,σ ∗) < h(σ ∗)

0, otherwise,

(6)

where dmax is the predefined maximum distance value that makes

the reward value positive. The reward can be thought of as the sum

of progress reward 1 and target reward 1 − d (R,p,σ ∗)
dmax

, which are

both weighed by σ ∗.
Given the reward function, it is straightforward to adopt a DRL

algorithm to solve the problem. There aremany variants of DRL algo-

rithms, including CACLA [vanHasselt andWiering 2007], DDPG [Lil-

licrap et al. 2015], Evo-CACLA [Won et al. 2017], GAE [Schulman

et al. 2015], and PPO [Schulman et al. 2017]. As demonstrated in the

previous study [Won et al. 2017], any of the algorithms would learn

control policies successfully if the trajectory is mild and the clear-

ance threshold is large, despite that the relaxed conditions would

compromise the challenge of aerobatic maneuvers. Algorithm 1

shows the base algorithm used in our experiments. We will discuss

in the next section how to modify the base algorithm to adopt self-

regulated learning. Self-regulated learning is a general concept that

can be incorporated into any DRL algorithm for continuous control.

The core of the algorithm is the construction of value/policy

functions. We build a state-action value function and a determin-

istic policy function. The state-action value function Q receives a

ACM Trans. Graph., Vol. 37, No. 6, Article 181. Publication date: November 2018.

181:4 • Won et al.

state-action pair (s,a) as input and returns the expectation on cumu-

lative rewards. The deterministic policy π takes state s as input and
generates action a. Both functions are represented as deep neural

networks with parameters θQ ,θπ . The algorithm consists of two

parts. The first part of the algorithm produces experience tuples

{ei = (si−1,ai , ri , si)} and stores them in a replay memory B (line

2–10). Action a is chosen from the current policy and perturbed

with probability ρ to explore unseen actions (line 5–6). The state

transition is deterministic because forward dynamics simulation

is deterministic (line 7). The second part of the algorithm updates

value and policy networks (line 11–22). A mini-batch of experience

tuples picked from the replay memory updates the Q network by

Bellman backups (line 15–17). The policy network is updated by

actions that have positive temporal difference errors (line 18–20)

similar to CACLA [van Hasselt and Wiering 2007].

Algorithm 1 DRL Algorithm

Q |θQ : state-action value network

π |θπ : policy network

B : experience replay memory

1: repeat
2: s0 ← random initial state

3: for i = 1, · · · ,T do
4: ai ← π (si−1)
5: if unif(0, 1) ≤ ρ then
6: ai ← ai +N(0, Σ)
7: si ← StepForward(si−1,ai)
8: ri ← R(si−1,ai , si)
9: ei ← (si−1,ai , ri , si)
10: Store ei in B

11: XQ ,YQ ← ∅
12: Xπ ,Yπ ← ∅
13: for i = 1, · · · ,N do
14: Sample an experience tuple e = (s,a, r , s ′) from B
15: y ← r + γQ(s ′,π (s ′ |θπ)|θQ)
16: XQ ← XQ ∪ {(s,a)}
17: YQ ← YQ ∪ {y}
18: if y −Q(s,π (s |θπ)|θQ) > 0 then
19: Xπ ← Xπ ∪ {s}
20: Yπ ← Yπ ∪ {a}
21: Update Q by (XQ , YQ)
22: Update π by (Xπ , Yπ)
23: until no improvement on the policy

The progress of the learning algorithm depends mainly on the

difficulty level of the tasks. Most of the DRL algorithms are success-

ful with easy tasks, but they either fail to converge or converge to

unsatisfactory suboptimal policies with difficult tasks. Previously,

two approaches have been explored to address this type of problems.

The key idea of curriculum learning is to learn easy subtasks first

and then increase the level of difficulty gradually [Bengio et al. 2009].

Curriculum learning suggests that we learn easy aerobatic skills

first using a collection of simple trajectories and refine the control

policy gradually to learn more difficult skills step-by-step. The key

component is the difficulty rating of aerobatics skills associated with

spatial trajectories. We found that deciding the difficulty rating of

each individual trajectory is fundamentally as difficult as the aero-

batics control problem itself because we have to understand what

skills are required to complete the trajectory to rate its difficulty.

Recently, automatic curriculum generation methods have been stud-

ied in supervised learning [Graves et al. 2017] and reinforcement

learning [Held et al. 2017; Matiisen et al. 2017; Sukhbaatar et al.

2017] to avoid the effort of manually specifying difficulty levels.

However, applying those methods to our aerobatics problem is not

trivial.

Alternatively, there are a class of algorithms that combine tra-

jectory optimization with policy learning [Levine and Koltun 2014;

Mordatch and Todorov 2014; Won et al. 2017]. Given a target tra-

jectory or a sequence of sparse targets, the goal of trajectory opti-

mization is to generate either a simulated trajectory or open-loop

simulation as output. Assuming that the input target trajectory

is the same, optimizing the trajectory is much easier than learn-

ing the policy from a computational point of view. Therefore, the

common idea in this class of the algorithms is to solve trajectory

optimization first and let the simulated output trajectory guide pol-

icy learning. This idea does not help the solution of the aerobatics

problem either because even state-of-the-art trajectory optimiza-

tion methods equipped with non-convex optimization and receding

temporal windows often fail to converge with aerobatic maneuvers.

We will discuss in the next section how this challenging problem is

addressed with the aid of our self-regulated learning.

4 SELF-REGULATED LEARNING
Self-regulated learning in education refers to a way of learning that

learners take control of their own learning [Ormrod 2009]. The

learner achieves a goal through self-regulation, which is a recursive

process of generation, evaluation, and learning [?? SRL]. Generation
is a step that learners create a few alternatives that they can choose

from. Evaluation is a step that judges good or bad for the alterna-

tives. Learning is a final step that the learners observe the degree of

achievement and confirm the success or failure of the selected alter-

native. For example, if two sport athletes who have different exercise

ability try to learn the same skill, they first make self-determined

plans based on their current ability then they practice and evaluate

themselves. In the learning process, the plans and evaluations for

each athlete would be different due to the discrepancy of exercise

ability although they learn the same skill. The key concept of SRL

is that learners can decide/regulate their plans to complete the final

objective without the help of a teacher or a pre-fixed curriculum.

Aerobatics learning can benefit from this concept. What if the

agent (the flying creature) can self-regulate its own learning? In the

algorithm outlined in the previous section, a sequence of subgoals

and their associated rewards are provided by fixed rules (i.e. fixed

curriculum). Our SRL consists of two key ideas. First, the agent is

allowed to regulate subgoals and their associated rewards at any

time step and learn their actions accordingly. Second, self-regulation

policy is also learned together with its control policy in the frame-

work of reinforcement learning. The agent learns how to regulate

ACM Trans. Graph., Vol. 37, No. 6, Article 181. Publication date: November 2018.

Aerobatics Control of Flying Creatures via Self-Regulated Learning • 181:5

Fig. 2. The receding target on the spatial trajectory.

its reward and how to optimize its action with respect to the reward

simultaneously while building its own curriculum.

4.1 Self-Regulated DRL
State s = (sd ,σ , ss) in our system consists of dynamic state sd ,
progress parameter σ , and sensory state ss . The dynamic state sd =
(q, Ûq) includes the generalized coordinates q = (q1, · · · ,qD) and
the generalized velocity Ûq = (Ûq1, · · · , ÛqD) of the creature’s body

and D is its degrees of freedom. Note that the position of the root

joint is not included because the control strategy is independent of

the absolute position in the world reference coordinate system. σ
parameterizes the degree of completion of the trajectory tracking

task. The sensory state ss =
(
C(σ),C(σ + ϵ), · · · ,C(σ + wϵ)

)
is a

part of the trajectory of window sizew , where ϵ is the unit progress.
C(σ) is the subgoal the agent is tracking at σ (see Figure 2).

Action a = (â, ã) consists of dynamic action â and self-regulation

ã. The dynamic action â = (q̂,τ) generates joint torques for the
dynamics simulation by using Proportional-Derivative (PD) servos,

where q̂ is the target pose and τ is its duration. Self-regulation

ã = (∆σ ,∆R,∆p,∆h) changes the subgoal to adjust the progress,

the target orientation, position, and the clearance threshold (see

Figure 2). The self-regulated subgoal C̃(σ̃) =
(
R̃(σ̃), p̃(σ̃), ˜d(σ̃)

)
is

R̃(σ̃) = R(σ̃)∆R,
p̃(σ̃) = p(σ̃) + R(σ̃)∆p,
˜h(σ̃) = h(σ̃) + ∆h,

(7)

where σ̃ = σ + ∆σ . Reward R(s,a, s ′) in Equation(6) is now com-

puted with respect to the self-regulated subgoal. We also add a

regularization term (ã − ao)⊺W (ã − ao), where ao is the default (no

self-regulation) action andW is a diagonal weight matrix. In our

experiments, default action ao = (∆σo ,∆Ro ,∆po ,∆ho) is defined
by ∆Ro = I3, ∆po = (0, 0, 0), ∆ho = 0, and ∆σo is a positive value

that matches the average flight speed. The progress of tracking is

updated for the next state s ′ by σ̃ after taking action a. Intuitively
speaking, the agent senses its body state sd and a part of the trajec-

tory (σ , ss), and decides how to act and how to regulate the current

subgoal C(σ) simultaneously while avoiding excessive deviation

from the input trajectory.

Incorporating self-regulation into the base DRL algorithm is

straightforward. We extend the definition of actions to include self-

regulation and replace line 7-8 of Algorithm 1 with self-regulated

state transition and rewarding in line 2-7 of Algorithm 2. Note that

dynamic action â and self-regulation ã are learned simultaneously

in the single reinforcement learning framework. Dynamic action

â is learned to follow the guide of self-regulation ã. On the other

hand, self-regulation is learned while taking the current ability

(current policy) into account. Therefore, the control policy and the

self-regulation policy reinforce each other to evolve together as the

learning progresses.

The learning can also be interpreted in the reward point of view.

The largest reward value can be achieved when the agent achieves

all subgoals exactly without anymodification. However, this ideal re-

sults cannot be attained if the user-provided trajectory is physically

unrealizable or the maneuvers are beyond the exercise capability of

the agent. In such a case, the agent with self-regulation is able to

seek a point of compromise within its capability by modulating the

subgoal, whereas the agent without self-regulation keeps trying to

address the original subgoal. This makes a big difference when the

agent performs challenging tasks such as aerobatics. The agent with

self-regulation would have a better chance of completing the task

successfully because the progression of learning can be facilitated

by relaxed subgoals.

Algorithm 2 Step forward with self-regulation

s : the current state
a = (â, ã) : the action determined by the current policy

ã = (∆σ ,∆R,∆p,∆h) : a self-regulation part of the action

1: procedure StepForwardWithSRL(s,a)
2: σ ← σ + ∆σ
3: R̃ ← R(σ)∆R
4: p̃ ← p(σ) + R(σ)∆p
5:

˜h ← h(σ) + ∆h
6: s ′ ← Dynamic simulation with â

7: r ← Compute R(s,a, s ′) with progress σ and target (R̃, p̃, ˜d)

5 RESULTS
We implemented our algorithm in Python. DART [Dart 2012] was

used for the simulation of articulated rigid body dynamics, and Ten-

sorFlow [TensorFlow 2015] was used for the learning and evaluation

of deep neural networks. All computations were run on CPU (Intel

Xeon E5-2687W-v4) rather than GPU since dynamics simulation

was a computational bottleneck. Acceleration of neural network

operations on GPU does not help much.

All parameters for the dynamics simulation and neural network

learning are summarized in Table 1. We used the same values for

all experiments. The action values were first normalized by their

min/max values and the exploration noise Σ is set to 5% of the nor-

malized range. Starting from the initial exploration probability ρ, we
linearly decreased the probability by 20% of its value until 3 million

training tuples were generated. In the generation of training tuples,

we re-initialize the environment whenever the task is completed,

ACM Trans. Graph., Vol. 37, No. 6, Article 181. Publication date: November 2018.

181:6 • Won et al.

Table 1. Simulation and learning parameters

Simulation time step 0.001

Control time step ≈ 0.2

Policy learning rate (π) 0.0001

Value learning rate (Q) 0.001

Discount factor (γ) 0.95

Exploration probability (ρ) 0.5

Exploration noise (Σ) 0.05I

Maximum time horizon (sec) 50

Action range (normalized) ±10

State range (normalized) ±10

wp 0.005

wh 0.001

¯h 20.0

dmax 3.0

W 0.02

Fig. 3. The structure of deep neural networks for (a) the policy, (b) the
state-action value.

the simulation reaches the maximum time horizon, or no reward is

gained for a certain duration (2 seconds in our experiments).

Figure 3 illustrates deep neural networks used in our experiments.

All internal layers are 32 dimensional fully connected layers with elu
units and the final layers are 64 dimensional fully connected layers

with linear units. Note that tracking progress σ is merely a single

scalar value, but is connected forward to 32 fully connected layers.

The high-dimensional inputs sd and ss are equally connected to 32

fully connected layers. We designed the network connectivity based

on the importance of input parameters. Since σ plays an important

role in learning, we separated the parameter out and made its own

sub-group. Consequently, the tracking progress is weighed as much

as the dynamic state and the sensory state in learning. Similarly,

dynamic action â and self-regulation ã are equally weighed in our

design principles because they are connected to subnetworks of the

same size.

5.1 Aerobatic Maneuvers
Our self-regulated DRL learned a variety of aerobatic maneuvers

ranging from simple, easy-to-learn tasks to complex, extreme tasks

(see Figure 4). We categorized the tasks into beginner, intermediate,

and expert levels, and learn a control policy for each individual task.

The beginner level includes zero to one rapid turn. The intermediate

level includes one or two rapid turns possibly about two orthogonal

axes. The expert level exhibits a combination of multiple turns about

all axes, soaring, diving, and rolling. The learning process took 3 to

7, 10 to 24, and 24 to 48 hours for the beginner, intermediate, and

expert levels, respectively.

Beginner Level. Straight has no turn and thus requires only a basic

locomotion skill. X-turn involves a 360-degree rapid turn about the

X-axis (pitch direction) and the radius of the turn is only 2 times

longer than the body length of the creature. The creature has to

turn about the axis quickly to complete the maneuver. Y-turn about

the vertical axis (yaw direction) is even more challenging than X-
turn, since it requires asymmetric actions and balance maintenance

about the roll direction. The radius of Y-turn is only 1.5 times wider

than the wingspan. Smaller radius makes the maneuver even more

challenging.

Intermediate Level. All maneuvers (Double X-turn, Ribbon, and XY-
turn) in the intermediate level consist of two consecutive turns,

requiring preparatory control before starting the second turn. The

axes of the first and the second turn may or may not coincide with

each other. The axes of Double X-turn are aligned, but shifted. The

axes of Ribbon are parallel, but the trajectory winds in opposite

directions. The axes of XY-turn are orthogonal to each other. Our

learning method was able to cope with all three cases.

Expert Level. Z-turn involves a 360-degree turn about the Z-axis

(roll direction). Although it has only one turn, it is classified as

expert level because the actions are highly asymmetric and unstable.

Infinite X-turn includes five consecutive turns that form screw-like

maneuvers, gradually shifting sideways. Zigzag requires skillful

maneuvers to change the flying direction rapidly. Combination turn
is the longest trajectory in our experiments, consisting of three

successive Y-turns followed by rapid descending and X-turn.

5.2 SRL Visualization
Figure 5 (top) shows how self-regulation actually works. The up-

vectors along the trajectories are depicted for comparison. On the

straight line, the self-regulated targets are almost identical to the

user-provided targets (the first two targets in the figure), since the

agent was able to pass the targets without the aid of self-regulation.

On the curved interval, self-regulated targets incline towards the

inside of the turn to guide a banked turn. Even if the input trajec-

tory provides no information about the bank angle, self-regulation

automatically discovers how much the agent has to roll to a banked

ACM Trans. Graph., Vol. 37, No. 6, Article 181. Publication date: November 2018.

Aerobatics Control of Flying Creatures via Self-Regulated Learning • 181:7

Fig. 4. User-provided spatial trajectories. The up-vectors along the trajectories are shown in green and the clearance thresholds are shown in gray. (a) Straight.
(b) X-turn. (c) Y-turn. (d) XY-turn (e) Double X-turn (f) Ribbon (g) Z-turn. (h) Zigzag. (i) Infinite X-turn. (j) Combination turn.

Fig. 5. The input trajectory (green) and self-regulated trajectory (red).

position. Figure 5 (bottom) shows the Zigzag trajectory with its self-

regulation in front, top, and side views. The trajectory is physically

realizable if the curvature of the trajectory is within the exercise ca-

pability of the creature, bank angles are specified appropriately, and

flying speeds are specified to slow down and accelerate at corners. It

is not easy for the user to specify all the details of dynamics. The fig-

ure shows that SRL relaxed the curvature of turns at sharp corners,

suggested bank angles, and adjusted speeds along the trajectory

(slow at corners and faster between them).

Fig. 6. The control policy learned from the black trajectory can cope with
varied trajectories shown in orange. The creature was able to complete all
four tasks using the same control policy.

5.3 Generalization Capability
Contrary to trajectory optimization, the RL control policy general-

izes to address unseen trajectories similar to the learned trajectory.

To evaluate the ability of generalization, we created three new trajec-

tories similar to Double X-turn (see Figure 6). The creature was able

to complete the new tasks using the policy learned from the original

Double X-turn trajectory. This example also shows the robustness of

the policy, which can withstand external perturbation to a certain

extent.

ACM Trans. Graph., Vol. 37, No. 6, Article 181. Publication date: November 2018.

181:8 • Won et al.

Fig. 7. Interactive animation scenario.

5.4 Interactive Animation Authoring
The user can produce animated scenes interactively by editing in-

dividual trajectories and connecting them in a sequence. Figure 7

shows an example of animation scenarios. The color indicates the

type of the trajectory. Yellow, magenta, red, and blue correspond to

Left, Right, X-turn, and Z-turn, respectively. The user manipulated

each individual trajectory to fit into the environment (e.g., Left and
Right were attained by bending Straight). The creature switches

between control policies at the connecting points. The control poli-

cies are resilient against small perturbation, so they can handle

immediate switching between policies.

5.5 Comparison
SRL vs Non-SRL. To evaluate the effectiveness of our SRL method,

we compared two non-SRL versions of our algorithm with its SRL-

version. In the first non-SRL algorithm (Default), self-regulated

action was fixed as its default value ao , meaning that the progress

parameter increases by the default incremental progress value ∆σo
and the rotation and translation parameters are fixed as ∆Ro and

∆po , respectively. In the second non-SRL algorithm (Closest), the

progress parameter is updated in a way that the closest point on the

spatial trajectory from the creature is provided as a subgoal at every

moment. To prevent from choosing the subgoal in reverse direction

or jumping to a distant part of the trajectory when the trajectory is

self-intersected, we find the subgoal in the vicinity of the current

progress parameter by considering only the positive direction. As a

result, the progress parameter is increased in a continuous manner,

the increment could be zero if necessary. This incremental method

is similar to a method in Ju et al. [2013].
Table 2 shows performance comparison. Note that we cannot

compare the reward values of the algorithms side-by-side because

SRL changes the reward system actively. Instead, we measured

how closely the control policies tracked the trajectories. The user-

provided trajectory and the simulated trajectory are compared

through dynamic time warping (DTW). We ran each algorithm

three times with different random seeds. The Default algorithm

only succeeded in Straight, which is the most basic and easy-to-

learn for all algorithms, so we did not involve it in the result. The

Closest algorithm showed comparable results to our SRL algorithm

for the beginner and intermediate skills, however, the SRL algorithm

outperformed by large margins for the difficult skills. Note that the

SRL algorithm completed all skills, the Closest algorithm was unable

to complete Z-turn, Infinite X-turn, and Combination at all.

SRL vs Previous Work. We compared our method to Evo-CACLA by

Won et al. [2017] with two tasks Y-turn and Zigzag. In Evo-CACLA

method, if a single point is given as an input, then the policy that

brings creatures to the point without losing a balance and colliding

obstacles is automatically learned by using CACLA-style policy

update and the evolutionary exploration. Since Evo-CACLA takes a

single target position as input, we assume that the target is moving

along the input trajectory at the average flight speed and the creature

is controlled to track the target. The creature trained by Evo-CACLA

often lagged behind or passed the target so that it often had to stray

away from the trajectory to get back to the target. Evo-CACLA was

unable to complete the tasks within the clearance thresholds.

SRL vs Trajectory Optimization. Trajectory optimization in our prob-

lem setting is equivalent to finding entire action variables to com-

plete a given skill, where the dimension is usually higher than a

thousand and its energy landscape is highly nonlinear. We compared

our method to a window-based trajectory optimization method sim-

ilar to Borno et al. [2013], where an entire trajectory is split into

short segments (windows) and those are optimized sequentially by

using CMA-ES [1996]. We used 4-16 actions as a window size. The

method successfully completed Straight, X-turn, and Double X-turn,
however, it failed for the remaining skills. One main reason for the

failure is that preparatory and following motions are crucial for

aerobatic skills. For example, when we have two skills in a row, we

may have to be imperfect for the first skill to prepare the second

skill. In window-based optimization, the action variables only in

the same window are optimized simultaneously. Although this con-

dition can be relaxed by making overlaps between windows, the

effect is inherently restricted by the window size. We also tested

longer window sizes, however, not only slow computation but also

convergence on sub-optimal solutions were achieved.

6 DISCUSSION
We have presented a DRL-based approach to simulate and control

aerobatic maneuvers of flapping-winged creatures. It allows for the

demonstration of extreme motor skills, which span only a tiny bit of

subspace in the extremely wide, high-dimensional action space. Self-

regulated learning makes it possible to search for aerobatics skills

from scratch without any supervision. The process suggested by SRL

is quite similar to how people learn challenging motor skills. They

set up intermediate goals, practice, evaluate the current capability,

and regulate the goals repeatedly. SRL incorporated this intuitive

concept into the well-established framework of DRL.

Although SRL is simple and easy-to-implement, it is surprisingly

effective for a particular class of problems, for which sequential

sub-goals have to be identified and addressed one-by-one to achieve

the main goal. We found that a number of continuous control prob-

lems fall into this class, including locomotion of bipeds, quadrupeds,

birds, fishes, and any imaginary creatures. For example, as discussed

ACM Trans. Graph., Vol. 37, No. 6, Article 181. Publication date: November 2018.

Aerobatics Control of Flying Creatures via Self-Regulated Learning • 181:9

Table 2. Performance comparison of SRL with other algorithms. Average distances between user-provided trajectories and the simulated trajectories are
computed by Dynamic Time Warping. Maximum distance values are also shown in parentheses. A smaller number is better, the smallest number for each skill
is marked as boldface, an asterisk symbol represents the success of the given skill.

Algorithm X-turn Y-turn XY-turn Double

X-turn

Ribbon Z-turn Zigzag Infinite

X-turn

Combination

Default

2304.2

(12137)

1815.6

(10401)

1644.9

(13428)

14201

(79039)

8905.4

(42555)

2180.2

(11043)

1046.2

(4348.9)

36182

(107998)

48869

(250762)

Closest

28.193*

(132.4)
162.10

*

(461.81)
274.48

*

(1266.9)

35.891*

(145.72)
146.46

*

(739.98)

152.68

(1846.5)

175.46
*

(609.79)

942.81

(5653.4)

9050.0

(54705)

SRL

30.235
*

(177.93)

115.89*

(516.43)

114.77*

(531.96)
39.18

*

(232.25)

131.47*

(484.56)
67.479*

(228.965)
137.70*

(500.29)
136.82*

(1456.8)
264.82*

(988.96)

by Peng et al. [2017], locomotion control has a hierarchical struc-

ture. The high-level control of biped locomotion plans footsteps

for a given task. The footsteps serve as sequential sub-goals to be

addressed in the low-level control. If the task requires Parkour-level

agility in complex environments, successful learning of the low-level

controller critically depends on the footstep plans. Training all levels

of the hierarchy simultaneously is ideal, but end-to-end learning of

high-level planning and low-level control poses a lot of challenges

as noted in the previous study. SRL can help regulate the footstep

plans to achieve better performance in DRL at the computational

cost much cheaper than the cost of end-to-end learning.

Aerobatic maneuvers are less robust against external perturbation

than normal locomotion. Extreme motor skills are extreme because
they are at the boundary of the space of stable, successful actions

and the space of unstable, failing actions. Such motor skills are

quite resilient against perturbation in one direction, but could be

fragile along the other direction. A general recipe for improving

the robustness of control is to learn stochastic control policies by

adding noise to states, actions, and environments in the training

process. Stochastic learning improves robustness with increased

computational costs [Wang et al. 2010].

There are also failure cases in our study. In practice, many of the

spatial trajectories are aerodynamically infeasible and only a modest

portion allow for the realization of aerobatic maneuvers. Inverse
X-turn is one of the simplest examples that are aerodynamically

infeasible. It is similar to X-turn except that its rotation axis is oppo-

site. In X-turn, the creature soars up first and then goes down while

making an arch. On the contrary, in Inverse X-turn, the creature

dives first and then has to soar up while being upside down. The

airfoil-shaped wings cannot generate lifting force in an inverted po-

sition. Landing is another example our algorithm fails to reproduce.

In general, the greater angle of attack, the more lift is generated

by wings. However, when the wing reaches its critical (stall) angle

of attack, the wing no longer produces lift, but rather stall because

of turbulence behind the wing. Birds exploit this phenomenon to

rapidly decelerate and land. The simplified aerodynamics model

employed in our system cannot simulate turbulent air flow. More

accurate aerodynamic simulations are needed to reproduce realistic

landing behavior.

Equation 6 used in this study is a mixture of continuous (dense)

and discrete (sparse) reward formulation, where the switch between

them is determined by the clearance threshold. The benefit of the

dense reward is that it can always give feedback signals to the

agent, however, sophisticated reward engineering is required and the

engineering could be non-trivial in some cases (e.g. solving puzzle

andmaze). The pros and cons of the sparse reward are the opposite of

the dense reward. Although it is known that learning by the sparse

reward is much challenging than learning by the dense reward

in the high-dimensional environment due to delayed reward and

discontinuity, there exist cases where the sparse reward formulation

works better due to the nature of the problem domain [Matiisen et al.

2017]. We tested several design choices of the reward, the current

choice (a mixture of dense and discrete) with SRL performed best.

We think that our SRL was able to modulate denseness/sparsity of

the reward adaptively in the learning process.

There are many exciting directions to explore. We wish to explore

the possibility of applying SRL to general RL problems, which do not

necessarily generate sequential sub-goals in the solution process. As

for flapping flight simulation and control, an interesting direction

would be improving flexibility, adaptability, and controllability. We

hope to be able to control the timing and speed of the action as well

as its spatial trajectory. We want our creature to be able to adapt

to changes in loads, winds, and all forms of perturbation. It would

also be interesting to control exotic creatures with long, deformable

bodies and limbs.

ACKNOWLEDGMENTS
This research was supported by the MSIP(Ministry of Science, ICT

and Future Planning), Korea, under the SW STARLab support pro-

gram (IITP-2017-0536-20170040) supervised by the IITP(Institute

for Information communications Technology Promotion.

REFERENCES
Social Psychology, Second Edition: Handbook of Basic Principles.
Pieter Abbeel, Adam Coates, and Andrew Y. Ng. 2010. Autonomous Helicopter Aero-

batics Through Apprenticeship Learning. International Journal of Robotics Research
29, 13 (2010), 1608–1639.

Pieter Abbeel, Adam Coates, Morgan Quigley, and Andrew Y. Ng. 2006. An Application

of Reinforcement Learning to Aerobatic Helicopter Flight. In Proceedings of the 19th
International Conference on Neural Information Processing Systems (NIPS 2016). 1–8.

Pieter Abbeel and Andrew Y. Ng. 2004. Apprenticeship Learning via Inverse Rein-

forcement Learning. In Proceedings of the Twenty-first International Conference on
Machine Learning (ICML 2004).

Mazen Al Borno, Martin de Lasa, and Aaron Hertzmann. 2013. Trajectory Optimization

for Full-BodyMovements with Complex Contacts. IEEE Transactions on Visualization
and Computer Graphics 19, 8 (2013).

Jernej Barbič, Marco da Silva, and Jovan Popović. 2009. Deformable Object Animation

Using Reduced Optimal Control. ACM Trans. Graph. 28, 3 (2009).

ACM Trans. Graph., Vol. 37, No. 6, Article 181. Publication date: November 2018.

181:10 • Won et al.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. 2009. Curricu-

lum Learning. In Proceedings of the 26th Annual International Conference on Machine
Learning (ICML 2009). 41–48.

M. Al Borno, M. de Lasa, and A. Hertzmann. 2013. Trajectory Optimization for Full-

Body Movements with Complex Contacts. IEEE Transactions on Visualization and
Computer Graphics 19, 8 (2013).

Stelian Coros, Philippe Beaudoin, and Michiel van de Panne. 2010. Generalized biped

walking control. ACM Trans. Graph. (SIGGRAPH 2010) 29, 4 (2010).
Stelian Coros, Andrej Karpathy, Ben Jones, Lionel Reveret, and Michiel van de Panne.

2011. Locomotion Skills for Simulated Quadrupeds. ACM Trans. Graph. (SIGGRPAH
2011) 30, 4 (2011).

Stelian Coros, Sebastian Martin, Bernhard Thomaszewski, Christian Schumacher,

Robert Sumner, and Markus Gross. 2012. Deformable Objects Alive! ACM Trans.
Graph. (SIGGRAPH 2012) 31, 4 (2012).

Marco da Silva, Yeuhi Abe, and Jovan Popović. 2008a. Interactive simulation of stylized

human locomotion. ACM Trans. Graph. (SIGGRAPH 2008) 27, 3 (2008).
Marco da Silva, Yeuhi Abe, and Jovan Popović. 2008b. Simulation of Human Motion

Data Using Short-Horizon Model-Predictive Control. Computer Graphics Forum 27,

2 (2008).

Dart. 2012. Dart: Dynamic Animation and Robotics Toolkit. https://dartsim.github.io/.

(2012).

Martin de Lasa, Igor Mordatch, and Aaron Hertzmann. 2010. Feature-based locomotion

controllers. ACM Trans. Graph. (SIGGRAPH 2010) 29, 4 (2010).
Justin Fu, Katie Luo, and Sergey Levine. 2017. Learning Robust Rewardswith Adversarial

Inverse Reinforcement Learning. CoRR abs/1710.11248 (2017).

Alex Graves, Marc G. Bellemare, Jacob Menick, Remi Munos, and Koray Kavukcuoglu.

2017. Automated Curriculum Learning for Neural Networks. In Proceedings of the
34th Annual International Conference on Machine Learning (ICML 2017). 1311–1320.

Radek Grzeszczuk, Demetri Terzopoulos, and Geoffrey E. Hinton. 1998. NeuroAnimator:

Fast Neural Network Emulation and Control of Physics-based Models. In Proceed-
ings of International Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH 1998). 9–20.

Sehoon Ha and C. Karen Liu. 2014. Iterative Training of Dynamic Skills Inspired by

Human Coaching Techniques. ACM Trans. Graph. 34, 1 (2014).
Sehoon Ha, Yuting Ye, and C. Karen Liu. 2012. Falling and landing motion control for

character animation. ACM Trans. Graph. (SIGGRAPH Asia 2012) 31, 6 (2012).
PerttuHämäläinen, Sebastian Eriksson, Esa Tanskanen, Ville Kyrki, and Jaakko Lehtinen.

2014. Online Motion Synthesis Using Sequential Monte Carlo. ACM Trans. Graph.
(SIGGRAPH 2014) 33, 4 (2014).

Perttu Hämäläinen, Joose Rajamäki, and C. Karen Liu. 2015. Online Control of Simulated

Humanoids Using Particle Belief Propagation. ACM Trans. Graph. (SIGGRAPH 2015)
34, 4 (2015).

Daseong Han, Haegwang Eom, Junyong Noh, and Joseph S. Shin. 2016. Data-guided

Model Predictive Control Based on Smoothed Contact Dynamics. Computer Graphics
Forum 35, 2 (2016).

Daseong Han, Junyong Noh, Xiaogang Jin, Joseph S. Shin, and Sung Yong Shin. 2014.

On-line real-time physics-based predictive motion control with balance recovery.

Computer Graphics Forum 33, 2 (2014).

N. Hansen and A. Ostermeier. 1996. Adapting arbitrary normal mutation distributions

in evolution strategies: the covariance matrix adaptation. In Proceedings of IEEE
International Conference on Evolutionary Computation. 312 –317.

David Held, Xinyang Geng, Carlos Florensa, and Pieter Abbeel. 2017. Automatic Goal

Generation for Reinforcement Learning Agents. CoRR abs/1705.06366 (2017).

Eunjung Ju, Jungdam Won, Jehee Lee, Byungkuk Choi, Junyong Noh, and Min Gyu

Choi. 2013. Data-driven Control of Flapping Flight. ACM Trans. Graph. 32, 5 (2013).
H. J. Kim, Michael I. Jordan, Shankar Sastry, and Andrew Y. Ng. 2004. Autonomous

Helicopter Flight via Reinforcement Learning. In Advances in Neural Information
Processing Systems 16 (NIPS 2003). 799–806.

Taesoo Kwon and Jessica Hodgins. 2010. Control Systems for Human Running Using an

Inverted Pendulum Model and a Reference Motion Capture Sequence. In Proceedings
of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA
2010).

Taesoo Kwon and Jessica K. Hodgins. 2017. Momentum-Mapped Inverted Pendulum

Models for Controlling Dynamic Human Motions. ACM Trans. Graph. 36, 1 (2017).
Yoonsang Lee, Sungeun Kim, and Jehee Lee. 2010. Data-driven biped control. ACM

Trans. Graph. (SIGGRAPH 2010) 29, 4 (2010).
Yoonsang Lee, Moon Seok Park, Taesoo Kwon, and Jehee Lee. 2014. Locomotion

Control for Many-muscle Humanoids. ACM Trans. Graph. (SIGGRAPH Asia 2014)
33, 6 (2014).

Sergey Levine and Vladlen Koltun. 2014. Learning Complex Neural Network Policies

with Trajectory Optimization. In Proceedings of the 31st International Conference on
Machine Learning (ICML 2014).

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,

Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with deep

reinforcement learning. CoRR abs/1509.02971 (2015).

Libin Liu and Jessica Hodgins. 2017. Learning to Schedule Control Fragments for

Physics-Based Characters Using Deep Q-Learning. ACM Trans. Graph. 36, 3 (2017).
Libin Liu, Michiel Van De Panne, and Kangkang Yin. 2016. Guided Learning of Control

Graphs for Physics-Based Characters. ACM Trans. Graph. 35, 3 (2016).
Libin Liu, KangKang Yin, Michiel van de Panne, and Baining Guo. 2012. Terrain runner:

control, parameterization, composition, and planning for highly dynamic motions.

ACM Trans. Graph. (SIGGRAPH Asia 2012) 31, 6 (2012).
Tambet Matiisen, Avital Oliver, Taco Cohen, and John Schulman. 2017. Teacher-Student

Curriculum Learning. CoRR abs/1707.00183 (2017).

Igor Mordatch and Emanuel Todorov. 2014. Combining the benefits of function ap-

proximation and trajectory optimization. In In Robotics: Science and Systems (RSS
2014).

Igor Mordatch, Emanuel Todorov, and Zoran Popović. 2012. Discovery of complex

behaviors through contact-invariant optimization. ACM Trans. Graph. (SIGGRAPH
2012) 29, 4 (2012).

Andrew Y. Ng, Daishi Harada, and Stuart J. Russell. 1999. Policy Invariance Under

Reward Transformations: Theory and Application to Reward Shaping. In Proceedings
of the Sixteenth International Conference on Machine Learning (ICML ’99). 278–287.

Jeanne Ellis Ormrod. 2009. Essentials of Educational Psychology. Pearson Education.

Xue Bin Peng, Pieter Abbeel, Sergey Levine, andMichiel van de Panne. 2018. DeepMimic:

Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills

Paper Abstract Author Preprint Paper Video. ACM Transactions on Graphics 37, 4
(2018).

Xue Bin Peng, Glen Berseth, and Michiel van de Panne. 2016. Terrain-adaptive Loco-

motion Skills Using Deep Reinforcement Learning. ACM Trans. Graph. (SIGGRPAH
2016) 35, 4 (2016).

Xue Bin Peng, Glen Berseth, KangKang Yin, and Michiel van de Panne. 2017. DeepLoco:

Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning. ACM
Trans. Graph. (SIGGRAPH 2017) 36, 4 (2017).

John Schulman, PhilippMoritz, Sergey Levine, Michael I. Jordan, and Pieter Abbeel. 2015.

High-Dimensional Continuous Control Using Generalized Advantage Estimation.

CoRR abs/1506.02438 (2015).

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. 2017.

Proximal Policy Optimization Algorithms. CoRR abs/1707.06347 (2017).

Kwang Won Sok, Manmyung Kim, and Jehee Lee. 2007. Simulating biped behaviors

from human motion data. ACM Trans. Graph. (SIGGRAPH 2007) 26, 3 (2007).
Sainbayar Sukhbaatar, Ilya Kostrikov, Arthur Szlam, and Rob Fergus. 2017. Intrinsic

Motivation and Automatic Curricula via Asymmetric Self-Play. CoRR abs/1703.05407

(2017).

Jie Tan, Yuting Gu, Greg Turk, and C. Karen Liu. 2011. Articulated swimming creatures.

ACM Trans. Graph. (SIGGRAPH 2011) 30, 4 (2011).
Jie Tan, Greg Turk, and C. Karen Liu. 2012. Soft Body Locomotion. ACM Trans. Graph.

(SIGGRAPH 2012) 31, 4 (2012).
TensorFlow. 2015. TensorFlow: Large-Scale Machine Learning on Heterogeneous

Systems. (2015). http://tensorflow.org/ Software available from tensorflow.org.

Yao-Yang Tsai, Wen-Chieh Lin, Kuangyou B. Cheng, Jehee Lee, and Tong-Yee Lee.

2009. Real-Time Physics-Based 3D Biped Character Animation Using an Inverted

Pendulum Model. IEEE Transactions on Visualization and Computer Graphics 99, 2
(2009).

Xiaoyuan Tu and Demetri Terzopoulos. 1994. Artificial fishes: physics, locomotion,

perception, behavior. Proceedings SIGGRAPH ’94 28, 4 (1994).
Hado van Hasselt and Marco A. Wiering. 2007. Reinforcement Learning in Continuous

Action Spaces. In Proceedings of the 2007 IEEE Symposium on Approximate Dynamic
Programming and Reinforcement Learning (ADPRL 2007). 272–279.

Jack M. Wang, David J. Fleet, and Aaron Hertzmann. 2010. Optimizing Walking

Controllers for Uncertain Inputs and Environments. ACM Trans. Graph. (SIGGRAPH
2010) 29, 4 (2010).

Jack M. Wang, Samuel. R. Hamner, Scott. L. Delp, and Vladlen. Koltun. 2012. Optimizing

Locomotion Controllers Using Biologically-Based Actuators and Objectives. ACM
Transactions on Graphics (SIGGRAPH 2012) 31, 4 (2012).

Jungdam Won, Jongho Park, Kwanyu Kim, and Jehee Lee. 2017. How to Train Your

Dragon: Example-guided Control of Flapping Flight. ACM Trans. Graph. 36, 6 (2017).
Jia-chi Wu and Zoran Popović. 2003. Realistic modeling of bird flight animations. ACM

Trans. Graph. (SIGGRAPH 2003) 22, 3 (2003).
Yuting Ye and C. Karen Liu. 2010. Optimal feedback control for character animation

using an abstract model. ACM Trans. Graph. (SIGGRAPH 2010) 29, 4 (2010).
Kangkang Yin, Kevin Loken, and Michiel van de Panne. 2007. SIMBICON: Simple Biped

Locomotion Control. ACM Trans. Graph. (SIGGRAPH 2007) 26, 3 (2007).
Wenhao Yu, Greg Turk, and C. Karen Liu. 2018. Learning Symmetry and Low-energy

Locomotion Paper Abstract Author Preprint Paper Video. ACM Transactions on
Graphics 37, 4 (2018).

He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. 2018. Mode-Adaptive Neural

Networks for Quadruped Motion Control. ACM Transactions on Graphics 37, 4
(2018).

ACM Trans. Graph., Vol. 37, No. 6, Article 181. Publication date: November 2018.

https://dartsim.github.io/
http://tensorflow.org/

	Abstract
	1 Introduction
	2 Related Work
	3 Environment and Learning
	3.1 Aerobatics Description
	3.2 Reinforcement Learning

	4 Self-regulated Learning
	4.1 Self-Regulated DRL

	5 Results
	5.1 Aerobatic Maneuvers
	5.2 SRL Visualization
	5.3 Generalization Capability
	5.4 Interactive Animation Authoring
	5.5 Comparison

	6 Discussion
	Acknowledgments
	References

