
Learning Time-Critical Responses for Interactive Character Control

KYUNGHO LEE, NCSOFT, South Korea
SEHEE MIN, Seoul National University, South Korea
SUNMIN LEE, Seoul National University, South Korea
JEHEE LEE, Seoul National University, South Korea

Creating agile and responsive characters from a collection of unorganized
human motion has been an important problem of constructing interactive
virtual environments. Recently, learning-based approaches have successfully
been exploited to learn deep network policies for the control of interactive
characters. The agility and responsiveness of deep network policies are
influenced by many factors, such as the composition of training datasets, the
architecture of network models, and learning algorithms that involve many
threshold values, weights, and hyper-parameters. In this paper, we present a
novel teacher-student framework to learn time-critically responsive policies,
which guarantee the time-to-completion between user inputs and their
associated responses regardless of the size and composition of the motion
databases. We demonstrate the effectiveness of our approach with interactive
characters that can respond to the user’s control quickly while performing
agile, highly dynamic movements.

CCS Concepts: • Computing methodologies → Animation; Motion
capture;Motion processing.

Additional Key Words and Phrases: Interactive Character Control, Time-
critical Response, Agility and Responsiveness, Recurrent Neural Network,
Multi-Objective Control

ACM Reference Format:
Kyungho Lee, Sehee Min, Sunmin Lee, and Jehee Lee. 2021. Learning Time-
Critical Responses for Interactive Character Control.ACMTrans. Graph. 40, 4,
Article 147 (August 2021), 11 pages. https://doi.org/10.1145/3450626.3459826

Authors’ addresses: Kyungho Lee, NCSOFT, 12, Daewangpangyo-ro 644ben-gil,
Bundang-gu, Seongnam-si, 13494, South Korea, whcjs13@ncsoft.com; Sehee Min,
Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea,
seiing@mrl.snu.ac.kr; Sunmin Lee, Seoul National University, 1 Gwanak-ro, Gwanak-
gu, Seoul, 08826, South Korea, sunmin.lee@mrl.snu.ac.kr; Jehee Lee, Seoul National
University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea, jehee@mrl.snu.ac.kr.

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3450626.3459826.

1 INTRODUCTION
Creating agile and responsive characters is an essential goal of in-
teractive character animation and its applications. Interactive char-
acters are often created by acquiring a collection of motion capture
data and manually crafting a control structure, such as finite state
machines in game development, that allows transitioning between
motion segments. Automated algorithms, such asmotion graphs [Ko-
var et al. 2002; Lee et al. 2002] and motion matching [Clavet 2016],
are also available to mitigate the manual effort. Recently, learning-
based approaches have successfully been exploited to learn deep
networks from human motion data [Holden et al. 2017; Lee et al.
2018]. The deep network acts as a motion generator and can control
animated characters interactively at runtime.
The generative network model is often viewed as a black box

that takes user control as input at any moment and generates the
pose/motion of the character at the next time instance. The perfor-
mance of the generative model can be evaluated in several aspects,
such as motion quality, agility, responsiveness, and diversity. We
wish that the model generates plausible human-like motions, al-
lows the character to move quickly in response to user control,
and equips the character with many action choices. Although these
performance measures are of great importance in practical appli-
cations, learning a network model of desired quality level or im-
proving the model in a certain aspect is a nontrivial task since
deep network learning is a highly complicated process. Usually, the
learning process consists of multiple steps, including data acqui-
sition, pre-processing, augmentation, network learning, and post-
processing, which involve many threshold values, weights, and
hyper-parameters to tune. The performance of a network model is
the result of complex interactions between training datasets and
parameter tuning.

We are particularly interested in the agility and responsiveness of
interactive characters. In this paper, a novel learning framework is

ACM Trans. Graph., Vol. 40, No. 4, Article 147. Publication date: August 2021.

https://doi.org/10.1145/3450626.3459826
https://doi.org/10.1145/3450626.3459826


147:2 ˆ Lee et al.

presented to train a generative network policy based on a new con-
cept,time-critical responsiveness. Our algorithm learns a time-critical
policy that allows interactive characters to respond quickly to the
user's control regardless of the size and composition of training
datasets. The time-critically responsive network guarantees that the
time duration between control input and its associated response is
within a critical response time, which serves as the responsiveness
level of the network policy. The key technical contribution of our
work is as follows:

� Time-critical responsivenessis newly introduced in the con-
text of interactive character control. The concept is popular
in real-time systems. We adopted the concept to de�ne the
responsiveness of interactive characters.

� A novel teacher-studentframework that �rst learns a teacher
policy based on reinforcement learning and then a time-
critical student policy by policy distillation. This framework
simpli�es the complexity of the problem to make it tractable.

2 RELATED WORK
Research on data-driven animation has explored a variety of ap-
proaches to utilizing motion capture data for motion synthesis and
interactive character control. Many of the approaches share a com-
mon idea of allowing transitions between motion frames in the
databases and eventually splicing them in a novel order. To do so,
the motion graph explicitly maintains plausible transitions between
motion frames in a directed graph [Kovar et al. 2002; Lee et al. 2002].
Any path traversing through the graph corresponds to a stream
of the character's movements. Searching a graph path is a com-
binatorial planning problem, which has been addressed by using
various methods, such as state-space search [Heck and Gleicher
2007; Min and Chai 2012; Safonova and Hodgins 2007], dynamic
programming [Ren et al. 2010], and min-max search [Shum et al.
2012].

Given a motion graph, the agility and responsiveness of the char-
acter are closely related to the richness of potential transitions. The
richer the transitions, the quicker the character can respond. Reitsma
and Pollard [2007] evaluated the responsiveness of motion graphs
by unrolling them into a virtual environment. Safonova and her col-
laborators [2010; 2009] studied ways to achieve good connectivity
in motion graphs. McCann and Pollard [2007] created responsive
game characters by establishing a mapping between the player's
input and motion fragments. Ikemoto et al. [2007] computed the
source-to-target blends of transitions during pre-processing and
used the cached blends to make quick transitions at runtime. The
perceptual e�ects of responsiveness are also evaluated in game
environments [Jörg et al. 2012]. Ever since Lee and Lee [2004] intro-
duced reinforcement learning into character animation, reinforce-
ment learning has been frequently adopted to create interactive
characters and their control policies [Lee et al. 2010; Levine et al.
2012; Treuille et al. 2007].

Motion matching is a variant of motion graphs aiming to max-
imize the responsiveness [Clavet 2016]. The motion matching al-
gorithm does not construct a graph of transitions, but searches for
the best transitions at runtime in response to the user's control.
The di�erence between motion graphs and motion matching can be

viewed from a trade-o� between motion quality and responsiveness.
Motion graphs pre-compute plausible transitions above a certain
quality threshold, and runtime motion synthesis is limited within
the pre-computed transitions. In other words, keeping the motion
quality above the threshold is the main goal, and responsiveness is
the secondary consideration. In contrast, the motion matching algo-
rithm searches for the best transition among all possible transitions
without limits. The motion quality should be assured by careful
acquisition and pre-processing of the motion datasets, which should
provide rich connectivity of good-looking transitions. There is a
wealth of literature on data-driven animation dealing with multi-
character interactions [Shum et al. 2008; Won et al. 2014], motion
planning in static and dynamics environments [Choi et al. 2011; Ka-
padia et al. 2016; Lee et al. 2006; Levine et al. 2011; Lo and Zwicker
2008], syntactic structures [Hyun et al. 2016], and physical interac-
tions [Arikan et al. 2005; Zordan et al. 2005].

Deep learning has brought revolutionary changes in data-driven
animation since motion datasets can be e�ectively exploited for
training deep networks. Holden et al. [2016] used an autoencoder
and a feedforward neural network to produce motion sequences
following a curve on the terrain. In their subsequent work, they
learned a phase-functioned neural network to produce motions
where the character adapts to uneven terrain [Holden et al. 2017].
Lee et al. [2018] used a recurrent neural network to learn vari-
ous types of actions and user controls from unorganized human
motion data. Recurrent models have also been used for motion
prediction [Fragkiadaki et al. 2015; Martinez et al. 2017], inbetween-
ing [Harvey et al. 2020], and synthesis [Henter et al. 2020]. Zhang
et al. [2018] adopted a mixture of experts approach to deal with
multiple modes in quadruped locomotion. This idea has further
been explored to deal with character-scene interactions [Starke et al.
2019] and multi-modal phases [Starke et al. 2020]. Ling et al. [2020]
combined variational autoencoder, phase-functioned neural net-
work, and deep reinforcement learning to build a running controller
for interactive characters. Motion graphs and motion matching have
been used to provide datasets for training deep networks. For ex-
ample, Lee et al. [2018] used motion graphs to generate training
datasets and learn their recurrent networks. Holden et al. [2020]
designed a network architecture that imitates the functionality of
the motion matching algorithm.

Deep reinforcement learning (DRL) plays an important role in
making a connection between data-driven animation and physics-
based simulation. Peng et al. [2018] presented a DRL algorithm that
learns a control policy to imitate a reference motion clip in physics
simulation. Park et al. [2019] created physically-simulated characters
that can be controlled interactively. To do so, they trained recurrent
neural networks from human motion data to generate a stream of
motion sequences in response to user input and utilized DRL to train
a physics-based control policy to track the generated motion. Simi-
larly, Bergamin et al. [2019] combined motion matching and DRL to
create responsive simulated characters. Many control systems based
on DRL have been explored to deal with anatomical bodies [Jiang
et al. 2019; Lee et al. 2019], �exible object manipulation [Clegg et al.
2018], quadrupled locomotion [Luo et al. 2020; Peng et al. 2020],
�apping �ight [Won et al . 2017, 2018], swimming [Min et al. 2019],
acrobatic movements [Liu and Hodgins 2017], basketball dribbling

ACM Trans. Graph., Vol. 40, No. 4, Article 147. Publication date: August 2021.



Learning Time-Critical Responses for Interactive Character Controlˆ 147:3

skills [Liu and Hodgins 2018], and large motion databases [Won
et al. 2020].

3 TIME-CRITICAL RESPONSIVENESS
Theagility of a dancer or athlete refers to the ability to move quickly
and easily with a change of velocity or direction in response to a
stimulus [Sheppard and Young 2006]. This is a di�erent concept
from quickness, which indicates a fast moving speed or an ability
to change direction rapidly. The notion ofagility entails perceptual
recognition and decision-making components that lead to appropri-
ate responses. It is also related toresponsiveness, which refers to the
duration of time between an input from the user and the associated
response [Jörg et al. 2012]. In the context of our research, agility
and responsiveness are interchangeable.

Interactive characters can be controlled to accelerate, decelerate,
change their directions, switch poses, and perform actions, such as
jump, run, crawl, punch, and dodge, through user interfaces. The
user input, which is either continuous (e.g., joysticks) or discrete
(e.g., push buttons), speci�es a task for the character to perform. The
agility of an interactive character (or its control policy) is de�ned
by the expected response time to complete tasks given distribution
of user inputs.

' ¹c º = EB� %¹Bº•D� %¹Dº »TTCc ¹B•Dº¼• (1)

where TTC (Time-To-Completion) is the time duration to complete
a taskDstarting from a stateB. In our work, character animation
is a discrete time-series system. The control policyc takes the
character's current state and the user control as input and outputs
the updated state for the next time instance.

Fast, delayless responses are of great importance in interactive
applications. The easiest way to reduce the response time is to play-
back motion data faster than the data were originally captured. This
brute-force speed-up of the whole motion datasets could result in
the character's motion that looks hasty and unnatural. Alternative to
minimizing the expected response time, we considerTime-Critical
Responsiveness (TCR), which measures the actual impact on per-
ceived agility. TCR only considers cases where the completion time
exceeds a user-speci�ed threshold, which is calledcritical response
time.

TCR¹cº = EB� %¹Bº•D� %¹Dº »Truncatedc ¹B•Dº¼• (2)

where the truncated time is

Truncatedc ¹B•Dº =

(
TTCc ¹B•Dº � g¹Dº• if TTCc ¹B•Dº ¡ g¹Dº•

0• otherwise”
(3)

Since the time it takes to complete each task may di�er, critical
response timeg¹Dº is a function of user controlD. We will discuss in
the next section how to learn a control policyc while minimizing
TCR.

Recursively applying the policyc starting from stateB0 with
controlDgenerates a motion sequence" c ¹B0•Dº = ¹B0•B1•� � � •B) º,
where) is the time-to-completion. The terminal stateB) satis�es
completion criteria, which are task-dependent. We consider two
types of tasks: maintenance tasks and achievement tasks. The com-
pletion criteria of a maintenance task require the character to main-
tain desired states (such as heading direction and walking speed)

for a certain time duration. The achievement task is completed if
the character reaches a terminal state (such as a key pose and a
target location). Each task has its critical response time. The con-
trol policy c is time-critically responsive if it generates a motion
sequence" c ¹B•Dº for any givenBandDto complete the task within
its critical response timeg¹Dº.

4 SYSTEM OVERVIEW
The goal of our research is to learn time-critically responsive policies
from human motion data. There are very few assumptions about
the motion databases, which may be unorganized and unsegmented.
Rich transition-connectivity between frames is always preferred,
but it is not strictly required. Usable policies can be learned even
from sparsely-connected datasets. Our system can learn control
policies regardless of the size of the databases, which may be as
short as one minute and as long as a few hours in playtime.

The databases require minimal e�ort to annotate action types at
motion frames. The annotations are used to command the interac-
tive character. The databases include both periodic and aperiodic
actions. Periodic actions are usually associated with maintenance
tasks, while aperiodic actions are associated with achievement tasks.
We annotated all motion frames of locomotion with appropriate
maintenance task labels. For achievement tasks, we put labels on
their keyframes including the beginning and ending of the action.

Our system can deal with various types of user control that in-
clude directional, positional, and velocity conditions. Each action
type is associated with a tuple of user control parameters. For exam-
ple, locomotion is controlled with direction and velocity parameters,
while Jump-Over-Obstacle requires the position of the obstacle.

As demonstrated in previous studies, reinforcement learning (RL)
is adept at learning control policies that allow the agent to per-
form desired tasks. However, we found that reinforcement learning
alone is not su�cient to learn time-critical policies because of the
structural complexity of motion data. Data-driven motion synthesis
has exploited both combinatorial operations (e.g. splicing motion
frames into a novel order) and continuous operations (e.g. smoothly
deforming motion paths and time warping) to animate interactive
characters. Incorporating both combinatorial and continuous op-
erations into a uni�ed framework is challenging. We present a
teacher-student framework to circumvent this di�culty (see Fig-
ure 1). The teacher agent learns the optimal ways to achieve the
tasks only allowing combinatorial operations. Once the teacher pol-
icy is learned, we train a student policy via policy distillation. Policy
distillation is a process of extracting the policy of an RL agent and
training a new network that performs the tasks at the same level
of pro�ciency while being smaller and more e�cient [Rusu et al.
2016]. We intervene in the policy distillation process through data
generation and projection phases such that the student agent not
only mimics the behavior of the teacher agent but improves on the
policy in terms of response time and control accuracy.

The teacher and student policies have di�erent goals and use
di�erent network architectures. The teacher policy has full access
to the training datasets in both learning and inference phases. This
privileged information enables the teacher policy to achieve high
performance and better motion quality. We abandon the training

ACM Trans. Graph., Vol. 40, No. 4, Article 147. Publication date: August 2021.



147:4 ˆ Lee et al.

Fig. 1. System Overview

datasets after the learning phases for memory e�ciency. Therefore,
the student policy does not have such privileged access to the full
datasets. The student policy uses a recurrent network model that
produces future predictions based on an extended history of the
states and thus can mimic complex control policies using brief state
representation.

5 TEACHER LEARNING
We consider reinforcement learning that addresses discrete-time
Markov decision problems. The RL agent takes the current state
and the user control as input and outputs the next state while maxi-
mizing the expected cumulative rewards. The states correspond to
the motion frames in the training datasets. The RL agent navigates
through the training datasets similarly to how motion graphs and
motion matching allow transitioning between motion frames and
splicing them [Clavet 2016; Lee et al. 2002]. RL provides smarter,
optimized policies to achieve the desired goals more e�ciently. Our
RL agent leverages both deep policy network and conventional,
hard-coded decoder to implement this state transitioning process.

5.1 Reinforcement Learning Formulation

The user input is de�ned by a tupleD= f 0̂•Ĉ•̂3•?̂g, where one-hot
vector0̂ represents the action type,̂Cis the response time,̂3 is the
target direction,?̂ is the target position. The target direction and
the target position may or may not be speci�ed depending on the
action type. We simply put zero for unspeci�ed values.

Let8be the index of motion frames in the training datasets and
58 be a motion frame that includes the description of a full-body
pose. The stateBis an enriched, feature-based description of58 that
includes the root position, root direction projected onto the ground,
and the 3D positions of the end-e�ectors at the current frame8and
three future frames at8¸ 10, 8¸ 20and8¸ 30. All positions are
represented with respect to the body local coordinate system. Here,
we assume that the motion data are captured at the rate of 30 frames
per second. This rich, future-including description is preferred to
learn from time-series data.

5.1.1 State Transition.The output (action) of the policy network
c ¹B•Dº is the change of the state vector� B, which entails subsequent
transitioning to a new state at the next time instance. The process
of state transitioning is similar to motion matching. We search for
the frame that best matches the state description¹B¸ � Bº from the

training datasets. The new stateB0 is the state description of the best
matching frame59. The user controlDis also updated appropriately
according to the change of the body coordinate system and the
response timêCis decreased by a �xed time step. Since frequent
transitioning is harmful for motion quality, transitioning is allowed
every# frames. In our experiments, we allowed transitioning every
5 frames. During this period of time, the agent proceeds to the next
frame 9 = 8¸ 1 in the datasets and motion frames are smoothly
blended to exhibit seamless transitioning.

5.1.2 Rewards.The reward includes two terms.

A= Aplausibility ¸ Atask (4)

The RL agent receives a plausibility reward when it makes a transi-
tion from stateBto stateB0.

Aplausibility = � F plausibilityk59 	 58k2• (5)

where motion frames58 and 59, respectively, match the current and
next state descriptionBandB0. The symbol	 represents the distance
between two full-body poses in the databases. We compute the dis-
tance by the weighted sum of joint position di�erences and joint
velocity di�erences. The plausibility reward encourages smooth
transitions between frames. While the plausibility rewards are re-
ceived continuously throughout the simulation, the task rewards
are received sparsely only when a task is completed.

Atask = � F3 k3̂ � 3k2 � F? k?̂ � ?k2• (6)

where3 and?, respectively, are the current direction and position
of the agent. Here,Atask is maximized if the goal statê0 is achieved
in the critical response timêg and both target direction and target
position are met at that time. In our examples, we always specify the
action goal and the critical response time, but the target direction
and target position are optional. If we do not have both, the reward
is a constant,Atask = 0.

5.2 Pruning
The algorithm learns policy and value functions episodically. Given
a random stateBand a random user inputD, policy c generates
a motion sequence" c ¹B•Dº to collect experience tuples. We gen-
erate many episodic motion sequences and update the policy and
value networks using Proximial Policy Optimization [Schulman
et al. 2017]. This on-policy approach can e�ciently deal with main-
tenance tasks. However, the learning could be relatively slow for

ACM Trans. Graph., Vol. 40, No. 4, Article 147. Publication date: August 2021.



Learning Time-Critical Responses for Interactive Character Controlˆ 147:5

achievement tasks, which need to search for combinatorial paths
through motion frames to reach the goal state. Gradient descent
approaches for policy optimization are not particularly suitable for
long-horizon combinatorial planning and search problems.

We dramatically improve the learning speed by precomputing the
cumulative plausibility rewards for any state and response time. The
precomputed plausibility rewards provide lower-bound of the cu-
mulative rewards at any state and thus allow the learning algorithm
to e�ectively prune unnecessary state exploration.

Let " be an episodic motion sequence of= frames, where the last
frame of" meets the task goal0 and its length= Ÿ g is shorter than
the critical response time. The cumulative reward of" is

+0 ¹" º = W=A=
task ¸

=� 1Õ

8=0

W8A8
plausibility• (7)

whereWis a discount factor. We precompute and tabulate the second
term in the equation. Speci�cally, we construct two tables� 0 ¹8• Cº
and) 0 ¹8• Cº. Assuming that the RL agent is in a state that matches
the motion frame58 and has a task0 to achieve. The entry of the
table� 0 ¹8• Cº is the sum of discounted plausibility rewards assuming
that the agent starting from frame58 will make the most plausible
moves to reach the goal state in timeC. This motion is sub-optimal
because it does not meet the target direction and target position
when the goal state is achieved.) 0 ¹8• Cº is a rigid transformation
that represents the total translation and rotation of the agent while
traversing the most plausible path. The construction of the tables is
explained below.

Given the tables, the lower bound of the value can be derived.

+ lower
0 ¹8• Cº = Atask¹) 0 ¹8• Cºº ¸ � 0 ¹8• Cº” (8)

The task rewardAtask¹) 0 ¹8• Cºº assumes that the agent translates and
rotates by) 0 ¹8• Cº while it traverses following the most plausible
path, which serves as an initial approximation of the optimal path.
The policy learner does not need to explore any state of which
expected value is below the lower bound and thus those state can
be pruned in the learning process.

The pruning is implemented by modifying the state transitioning
step in RL. Assume that the agent makes a transition from frame
8to frame 9since stateB¹59º is the best match of stateB¹58º. The
estimated plausibility reward can be derived from the Bellman equa-
tion.

+0 ¹8• 9• Cº = Aplausibility¹8• 9º ¸ W�0 ¹9• C� 1º” (9)

This value should be higher than the lower bound. Otherwise, frame
9is not worth exploring because it will never �nd a better path than
the precomputed path. The modi�ed matching process searches the
best match subject to this pruning condition.

argmin
9

kB¹59º � ¹ B¸ � Bºk2•

subject to +0 ¹8• 9• Cº � + lower
0 ¹8• Cº”

5.2.1 Precomputation.Table� 0 ¹8• Cº is computed by dynamic pro-
gramming, which sequentially �lls in the cumulative plausibility
rewards in the frame-time table. The recursive relation is

� 0 ¹8• Cº = max
9

�
Aplausibility¹8• 9º ¸ W�0 ¹9• C� 1º

�
” (10)

The size of the table is# � " , where# is the number of motion
frames in the database and" is the number of discretized time steps
in »0• �g¼. � 0 ¹8•0º = 0 if the action label at frame8matches the user
input. Otherwise,� 0 ¹8•0º = �1 . While updating the reward table
during dynamic programming, we also update the transformation
table synchronously to accumulate transformations along paths.

) 0 ¹8• Cº = ) 8! 9 � ) 0 ¹9• C� 1º• (11)

where) 8! 9 is the transformation to align the frames when the
character jumps from frame8to 9. Once the table is �lled, the most
plausible path to a goal state can be found by tracing backwards in
the table. The dynamic programming is computationally feasible
since the time horizon to explore is supposed to be short for agile
and responsive characters.

6 POLICY DISTILLATION
Policy distillation is a process of supervised regression. The teacher
policy generates a large collection of episodic motion sequences,
which are used to train a student policy. The student policy replaces
the teacher policy after learning.

The teacher policy is learned with a �xed critical response timegC
for each task. The critical response time should be chosen carefully
because there exists a trade-o� between responsiveness and motion
quality. If the critical response time is above a certain threshold, it
does not a�ect the motion quality. However, if the critical response
time is below the threshold, the agent has to make aggressive tran-
sitions between very di�erent frames or may fail to meet the target
direction/position within the time limit. The aggressive transitions
could be a major cause of quality degradation. The threshold de-
pends on the richness of transition-connectivity in the training
datasets. If the datasets were captured in a carefully planned man-
ner to allow rich transitions, the teacher policy is readily responsive
and thus have a low critical response time. In that sense,gC is an
intrinsic parameter that can be derived from the datasets.

The student policy is not an identical copy of the teacher policy,
but the student policy achieves better responsiveness through pol-
icy distillation. Responsiveness can be improved by making motion
data �exible. Motion sequences in the training datasets allow for
spatial deformation and time warping to improve control accuracy
and responsiveness. For the student policy, critical response time is
a controllable parameter. The student policy can have a continuous
spectrum of responsiveness ranging from agile to sluggish by ad-
justing the parameterg at run-time, where the parameter range is
g 2 »gB•gC¼. Unlike the upper-boundgC, the lower-boundgB is spec-
i�ed by the user to determine how agile the interactive character
can get.

6.1 Data Generation and Projection
Given an initial stateBand a user controlD, the teacher policy
produces an episodic motion sequence" 0¹B•Dº with a subsequent
stateB0 at the end of the motion. The next episode begins with
stateB0. Repeating this process with a random distribution of user
control produces a batch of episodesM = f " 8g, which forms a
long continuous sequence of motion frames suitable for training
recurrent networks.

ACM Trans. Graph., Vol. 40, No. 4, Article 147. Publication date: August 2021.



147:6 ˆ Lee et al.

All motion sequences generated by the teacher policy are time-
critically response, so shorter thangC. We want to generate more
variations to deal with controllable parameterg for the student
policy. To do so, we draw random samples from the range»gB•gC¼
and timewarp the motion sequence if it is longer than the random
sample. In this way, we can collect many tuples of a time limit and a
motion sequence that performs a desired take within the time limit.

The motion sequence may not perfectly satisfy the direction
and/or position conditions at the end frame. The main reason of
this inaccuracy is the training datasets that cannot provide suf-
�cient variations for continuous control. The inaccuracy can be
�xed by smoothly deforming the motion sequence to enforce the
direction/position conditions.

We employ the Laplacian motion editing [Kim et al. 2009] to per-
form both spatial deformation and time warping. Given spatial and
temporal constraints, the motion sequence undergoes deformation
by adjusting both its spatial trajectory and timeline smoothly. The
rigidity can be speci�ed per-frame basis in the Laplacian formulation.
The rigidity coe�cients determine how easily the spatial trajectory
deforms and the timeline warps. It is desirable that key actions re-
main unchanged and the subsidiary actions between key actions are
deformed to improve responsiveness. Labeling higher rigidity coe�-
cients on key actions achieves the desired result through non-linear
spatial deformation and non-linear time warping.

6.2 Student Learning
The student policy takes the current stateBCand user controlDCas
input and outputs the next stateBÇ 1.

BÇ 1 = c ¹BC•DCº (12)

We adopted a Recurrent Neural Network (RNN) model since it is
simple, easy-to-implement, and adept at dealing with time-series
data. Speci�cally, the network model consists of stacked LSTM
layers sandwiched between encoder and decoder layers, similar to
the multi-objective control model [Lee et al. 2018].

The state of the student policy is represented as a tupleB =
fAC•A3• 9?• 9A•2• 0g, whereAC 2 R2 andA3 2 R1 are the position and
direction, respectively, of the skeleton root on the two-dimensional
plane.9? and 9A, respectively, is an aggregated vector of joint po-
sitions and orientations. The orientation of a joint is represented
by two column vectors of the rotation matrix. The third vector can
be omitted because it is the cross product of the other vectors.2 is
a vector of binary �ags that indicate the body-ground contacts at
end-e�ectors.0 is a one-hot vector indicating the activation of an
action.

The training datasetM provides a rich collection of experience
tuples¹BC•DC•BÇ 1º. The student policy can be learned from the ex-
perience tuples via supervised learning. The loss function includes
three terms:

� = � motion ¸ � contact¸ � rigid” (13)

The motion term� motion penalizes the discrepancy between net-
work outputs and training data.

� motion =
Õ

C
kBC� B̂Ck2• (14)

whereB̂Ç 1 andBÇ 1, respectively, are the observed state from an
experience tuple and the corresponding network output. The contact
term � contactpenalizes foot sliding.

� contact =
Õ

C

Õ

: 2Feet

2:
C2:

Ç 1k� :
C � � :

Ç 1k2• (15)

where: is the joint index and2:
C is a binary �ag that indicates if the

joint : is in contact with the ground plane at timeC. � :
C is the joint

position in the reference coordinate system. The rigid term� rigid
favors that the lengths of the body links are preserved.

� rigid =
Õ

C

Õ

¹:•< º 2Links

¹k� :
C � � <

C k � ;:< º2• (16)

where two adjacent joints: and< are connected by a rigid link and
;:< is its length.

7 EXPERIMENTS
We used TensorFlow [TensorFlow 2015] for deep network opera-
tions and Unreal Engine [Epic Games 2019] for characterization,
interactive control, and rendering. All computations were run on a
single PC (Intel i7-9700 CPU spec and NVIDIA GeForce RTX 2080Ti
GPU). The Adam optimizer was used in all learning processes. The
policy and value networks in RL consist of four fully-connected
layers of 512 ReLU nodes. The learning rate of policy and value net-
works, respectively, are10� 4 and10� 3. The discount factorWis 0.99
and GAE parameter_ is 0.95. The clip range of PPO is 0.2. The batch
size is 256. The student network consists of four LSTM layers with
512 tanh nodes and two fully-connected encoder/decoder layers.
The learning rate is10� 4 and the batch size is 128. The time step for
truncated BPTT is 48.

The teacher learning takes 12 to 24 hours in computation, while
the student learning takes 4 to 8 hours. Highly energetic actions tend
to require more computation to learn. The unoptimized network
inference module for run-time simulation takes 10 milliseconds
per frame with a single character. The network inference module
optimized with OpenVINO toolkit exhibits better performance such
that 100 characters in a scene can be animated simultaneously at
the rate of 10 milliseconds per frame.

We utilized a collection of motion databases either available freely
on the web or commercially on the Unreal Engine asset store (see
Table 1). The motion frames are labeled to identify action types.
Speci�cally, we identi�ed four actions (Walk, Jog, Run, and Stop)
in the locomotion data. For each aperiodic action, we labeled a
keyframe (e.g., the highest point of a jump and the moment of
impact of a kick) that serves as a reference of completing the action.
We also labeled a time interval around the keyframe, which matches
the beginning and ending of the action. The foot-ground contacts
are identi�ed automatically. Foot contact times are automatically
labelled by considering the distance and velocity of the heel and toe
joints relative to the ground plane.

7.1 Locomotion
The locomotion dataset consists of about 40,000 motion frames (22
minutes playtime) including walking, jogging, running, spiral turns
with various radii and rapid u-turns. The character is controlled
using a joystick, which speci�es the moving direction. The user

ACM Trans. Graph., Vol. 40, No. 4, Article 147. Publication date: August 2021.




	Abstract
	1 Introduction
	2 Related Work
	3 Time-Critical Responsiveness
	4 System Overview
	5 Teacher Learning
	5.1 Reinforcement Learning Formulation
	5.2 Pruning

	6 Policy Distillation
	6.1 Data Generation and Projection
	6.2 Student Learning

	7 Experiments
	7.1 Locomotion
	7.2 Martial Arts
	7.3 Keyframe Animation
	7.4 Position Control
	7.5 Horse
	7.6 Comparison
	7.7 Ablation on Policy Distillation

	8 Discussion
	Acknowledgments
	References

