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Abstract
Crowd simulation techniques have frequently been used to animate a large group of virtual humans in computer
graphics applications. We present a data-driven method of simulating a crowd of virtual humans that exhibit
behaviors imitating real human crowds. To do so, we record the motion of a human crowd from an aerial view
using a camcorder, extract the two-dimensional moving trajectories of each individual in the crowd, and then learn
an agent model from observed trajectories. The agent model decides each agent’s actions based on features of the
environment and the motion of nearby agents in the crowd. Once the agent model is learned, we can simulate a
virtual crowd that behaves similarly to the real crowd in the video. The versatility and flexibility of our approach is
demonstrated through examples in which various characteristics of group behaviors are captured and reproduced
in simulated crowds.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Three-Dimensional Graphics and Realism]:
Animation

1. Introduction

The group behavior of human crowds in the real world varies
significantly depending on time, place, the level of stress,
the age of people, and many other social and psychological
factors. These variations in group behavior are often charac-
terized by observable features such as interpersonal space,
the fluidity of formation, the level of energy, the uniformity
of distribution, the style of interpersonal interactions, and so
on.

The most popular approach to crowd simulation is based on
agent models. Each individual agent perceives nearby envi-
ronments and other agents, and decides its actions based on
a set of simple rules with a few tunable parameters. A big
advantage of agent-based models is that the integration of
individual rule-based actions exhibits collective group be-
havior of enormous complexity and subtlety. The downside
to this approach is that the crowd behavior is affected indi-
rectly and unintuitively by tuning parameters and changing
rules. This makes it difficult to produce a desired style of
group behavior using agent-based models.

† e-mail: {zoi,mingle,mani83,jehee}@mrl.snu.ac.kr

We present a data-driven method of simulating a crowd of
virtual humans that exhibit behavior imitating real human
crowds. Our simulation method is also agent-based, but the
behavior patterns of each individual agent are learned (rather
than hard-coded) from a video clip that recorded a crowd of
people from an aerial view. From the video, we would like
to understand what each person perceived and how he/she
acted in the perceived situation at every time instance. To
do so, we track the two-dimensional moving trajectories of
people and extract the context of the motion using vision-
based tracking techniques. As a result of visual tracking, we
acquire a large collection of state-action pairs, from which
our virtual human learns which actions to take for any given
situation.

Learning group behavior from videos is a challenging prob-
lem because the motion of each individual is influenced by
many factors that are not captured in the video. We assume
that each person in the video has separate mechanisms for
deciding his/her high-level behavior and low-level motion.
The low-level motion is assumed to be controlled based only
on features of the environment and the motion of nearby in-
dividuals in the crowd. In this work, we focus on learning an
agent model that controls the low-level motion of each agent
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Figure 1: Group behavior models are learned from crowd
videos.

in the crowd. Our learning algorithm is based on a locally
weighted linear regression [AMS97], which is further elab-
orated to cope with complex group behaviors in a variety of
environments.

Although multiple object tracking has been extensively stud-
ied in computer vision, automatic tracking of densely pop-
ulated pedestrians is still challenging in practice. Instead,
our system offers a semi-automated tracker and a keyframe-
based interactive interface to users for allowing user inter-
vention. Most of vision-based tracking algorithms track tar-
gets forward in time starting from their initial locations. This
approach often suffers from the “hijacking” problem, that
is, a tracker missing its own target and being attracted by
another target. Our user interface system allows the user
to refine the (possibly flawed) tracking result by inserting
keyframes incrementally in a top-down manner.

We demonstrate the power of our approach through ex-
amples, in which subtle characteristics of captured group
behaviors are reproduced, and through comparison with
Reynolds’ flocking algorithm. Our data-driven behavior
model can be learned to imitate the rule-based flocking al-
gorithm. We also demonstrate that captured insect behaviors
can be adapted for simulating human crowds.

2. Related Work

Crowd simulation and group behavior control have gained
significant interests in computer graphics, robotics, and ur-

ban planning. Since the rule-based agent model was intro-
duced in the seminal work of Reynolds [Rey87], many vari-
ants of agent models have been explored in research com-
munity and employed in commercial products such as Mas-
sive [Mas06]. A number of researchers addressed the prob-
lem of creating a “smarter” agent that can decide its actions
based on social, psychological, cognitive reasoning [MT97,
POSB05, FTT99,MH04, ST05], and have pathfinding capa-
bility facilitated by global path planning methods [LC03,
BLA03,LD04,PdHCM∗06,GKM∗01,KO04,SKG05]. Some
researchers focused on an alternative approach that makes
the environment “smarter” by embedding a repertoire of
control modules into environment objects so that an agent
can be provided with control strategies appropriate to its
location and situation in the environment [SGC04, ACT05,
LCL06]. We adopt this approach to allow the user to con-
struct high-level group behavior scenarios flexibly by ar-
ranging a set of learned behavior models in the environment.

Crowd modeling has also been studied in the urban plan-
ning and fluid dynamics communities. Helbing and his col-
leagues [HMFB01] suggested a social force model of in-
dividual pedestrian dynamics. Kirchner and Schadschnei-
der [KS02] simulated the evacuation process of a hu-
man crowd in a panic situation using cellular automata.
Hughes [Hug03] formulated the behavior of a human crowd
as a flowing continuum. Treuille et al. [TCP06] further elab-
orated Hughes’ continuum crowd model and suggested a nu-
merical method for simulating and visualizing crowd flow.
Chenney [Che04] explored a way of designing stationary
flow fields by tiling small rectangular regions of velocity
fileds.

The computer vision community has developed a number of
algorithms to track multiple moving objects in a video. To
name only a few of them, Comaniciu et al. [CRM03] pre-
sented a kernel-based object tracking method that represents
targets by feature histograms and tracks the targets using
gradient-based optimization. Zhao and Nevatia [ZN04] ad-
dressed tracking multiple humans and inferring their coarse
three-dimensional postures from a prior locomotion model.
Khan et al. [KBD05] proposed a MCMC-based multi-target
tracker that addressed a variable number of interacting tar-
gets. Egerstedt et al. [EBD∗05] applied this MCMC-based
tracker to trace the moving trajectories of ants and built a
model that informs what the ants were doing in the video.

Reproducing observed movement patterns in a simulated
environment has been explored in computer animation,
roboics, and pedestrian research. Lai et al. [LCF05] pre-
sented a data-driven method of creating and dynamically
updating group formations from a set of formation patterns.
Brogan and Johnson [BJ03] and Fajen et al. [FWTK] showed
that human walking data can be used to improve the qual-
ity of planned paths by adapting their steering models to
the observed data. In pedestrian research community, several
researchers addressed the problem of reconstructing crowd
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phenomena from video by tuning the parameters of their mi-
croscopic pedestrian models [Sti00, Tek02]. We share the
basic motivation with these approaches. The main advan-
tage of our approach is the ability to imitate a wide range
of group behavior patterns and styles by using a regression-
based learning method.

3. Video Capture and Processing

Human crowds are ubiquitous. Interesting crowd behaviors
can be found in any downtown streets and buildings. We in-
stalled a camcorder above the crowds as high up as possi-
ble to observe them from an aerial view with minimal paral-
lax effects, as long as each individual in the crowds is rec-
ognizable in the video. This setup makes the tracking pro-
cedure less painful because of minimal overlap of people.
We also recorded crowd videos in a controlled environment.
In recorded videos, about 40 volunteers displayed a variety
of group behavior scenarios as instructed. The scenarios in-
clude pedestrians crossing and streaming through a variety
of environment features, lining up in front of a ticket booth,
watching a performance at streets, wandering around, chat-
ting in small groups, just standing idly, and so on.

The crowd video includes a lot of information. From the
video, we need to identify environment features (such as
walls and obstacles), track two-dimensional trajectories of
individuals, and understand their high-level behaviors. At a
preprocessing phase, per-pixel median filtering is applied to
the video for background subtraction. Then, the user anno-
tates environment features manually on a video frame. Since
our videos do not include any dynamically moving objects
other than people, the manual annotation is not a burden.

Tracking individual trajectories from the video is a noto-
riously difficult problem. Inspired by the keyframe-based
tracking interface of Agarwala et al. [AHSS04], we built
a simple keyframe-based user interface system that al-
lows the user to track multiple targets in the video semi-
automatically. Our system employs a kernel-based tracking
algorithm proposed by Comaniciu et al. [CRM03] for track-
ing targets. This algorithm works well in a short term du-
ration, but often fails for an extended duration of tracking.
In order to achieve better reliability, our system requires the
user to specify both initial and final locations of each individ-
ual in the video. Then, the tracker is used to trace the target
trajectory forward in time from the initial location and also
trace backward in time from the final location. The forward
trajectory and the backward trajectory are linearly blended to
produce a more reliable trajectory. If this trajectory is unsat-
isfactory, the user may browse video frames and specify the
location of the target at an intermediate video frame. The bi-
directional tracking is then applied to two separate (initial-
to-intermediate and intermediate-to-final) time intervals. In
this way, the user can refine the trajectory adaptively until a
satisfactory result is obtained. Additionally, Gaussian filter-

Figure 2: The neighborhood formation is encoded with re-
spect to the local coordinate system shown in red and blue
arrows. The subjects were instructed to pretend that they are
walking along corridors.

ing is applied to resultant trajectories in order to smooth out
noisy oscillations.

Understanding high-level behaviors of individuals is even
more challenging. At a ticket booth, for instance, some peo-
ple would wait in line while some others would pass by or
wander around. Although we have not yet found a general
method of classifying different high-level behaviors auto-
matically from the video, we found that a set of simple rules
can be applied to identify specific behaviors effectively. For
example, the moving speed and relative distance between
nearby agents can be used to differentiate individuals wait-
ing in line, passing by, and just wandering around. In our
experiments, we manually annotated individual trajectories
with the type of high-level behaviors facilitated by these
heuristic rules.

4. State-Action Trajectories

Our crowd simulation system creates a number of agents
that decide actions based on their limited perception capa-
bility. The behavior model of each agent is learned from
state-action samples {(si,ai)} obtained from crowd videos.
The state s ∈ R

N of each agent reflects the motion of nearby
agents, its own motion, and environment features. The action
a∈R

2 of each agent is simply a two-dimensional vector that
corresponds to the instantaneous speed and moving direction
of the agent. To learn behaviors effectively, it is very impor-
tant to have a low-dimensional state space, in which various
aspects of group behaviors are compactly characterized. We
selected four features to model the agent’s state vector:

• Self speed: The instantaneous speed of the agent is com-
puted as the distance between the current position of the
agent and its position at the previous time instance divided
by the time interval.

• Neighborhood formation: The motion of the agent is
greatly influenced by the formation of nearby agents in the
crowd. Closer agents would have stronger influence on the
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behavior model and agents farther than a user-provided
threshold distance r have no influence. The threshold dis-
tance r depends on the density of the crowd. To effectively
represent this information by a fixed and relatively low
dimensional vector, we divide the space around the agent
into a set of eight radial regions (see Figure 2). Within
each radial region, the distance to the nearest agent is a
determining factor. The feature value for each radial re-
gion is

f =
{

(r−d)2/r2, if d < r
0, otherwise

(1)

where d is the distance to the nearest agent in the ra-
dial region. In order to reflect the temporal change of the
neighborhood formation, the state vector includes feature
values from two successive (the current and the previous)
frames. Thus, the neighborhood formation takes 16 en-
tries in the state vector.

• Pivot: Behaviors, such as passing through gates and wait-
ing in line, would take place with respect to the relevant
objects. We assume that each behavior we intend to model
can have at most one pivot object. In that case, the state
vector includes the position and orientation of the agent
with respect to the pivot object and its neighborhood for-
mation is also represented with respect to the coordinate
system attached to the pivot object.

• Intended moving direction: Each individual in a human
crowd behaves with intention, which is an important fac-
tor of understanding individual behaviors. The intention is
often implicit and may not be captured in crowd videos.
We approximately estimate the intended moving direc-
tion of a pedestrian by averaging the moving directions
in a window of past and future frames. The window size
was ten frames (one second) in our experiments. This es-
timation is rough, but still useful for high-level control of
pedestrians.

Each feature is empirically weighed according to its relative
influence on the group behaviors (see Table 1). When the
crowd is dense, we weighs the neighborhood formation over
the other features in order to avoid collisions between agents.
The intended moving direction is the most important feature
for locomotion.

The observed states are represented by 21-dimensional vec-
tors. We use a principle component analysis (PCA) to repa-
rameterize the state space in a low-dimensional (8 to 12 di-
mensional in our experiments) space for efficient learning of
behavior models.

5. Group Behavior Model

We model the group behavior in the video with a two-level
hierarchical structure consisting of high-level behavior mod-

Behavior model
Action model
for locomotion

Action model
for interaction

Output possibilities

Figure 3: Overview of our group behavior model. (Left) A
high-level behavior model consists of low-level action mod-
els, depicted as the gray circles. At runtime, the behavior
model decides the transitioning between low-level action
models. (Right) For steering each agent, the corresponding
active low-level model sorts output possibilities (shown as
radial lines) into groups and selects a plausible output sta-
tistically. The translucent radial windows show the range of
allowable perturbations.

els and low-level action models (see Figure 3 left). The be-
havior model consists of a set of low-level action models and
decides the transitioning between them to reproduce glob-
ally plausible group behavior patterns in crowd videos. Each
low-level model describes a primitive action that can be rep-
resented by a simple learning model.

The state-action trajectories acquired from the processed
video are segmented and classified into groups according to
the annotated behavior patterns, and each group is used to
learn a corresponding action model. The action model can
be considered as a function that takes the state of an agent
as input and produces a desired action of the agent at the
next time instance. Given novel state s observed in simula-
tion, our action model has to decide an action with respect
to the training data. There are many approaches addressing
this problem. For example, we can simply choose the near-
est sample from the training set and select its associated ac-
tion as output. This approach is simple and efficient, but the
disadvantage is that the mapping between inputs and out-
puts are discontinuous. So, drastically different output ac-
tions can be produced for similar input states.

An alternative approach is to select nearby samples and com-
bine them to produce an output. To do so, we employ a lo-
cally weighted linear regression method [AMS97], which
requires that the model be Markovian. In other words, the
agent’s decision as to how to act should depend only on the
current state. This condition is not satisfied in our group be-
havior learning problem. In crowd videos, each individual
used to make different decisions at the same perceived state.
We address this problem by clustering output possibilities
and selecting a plausible output probabilistically (see Fig-
ure 3 right). We focus on the construction of action mod-
els in this section and discuss high-level behavior models in
Section 6.1.
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5.1. Neighborhood Search and Clustering

The basic idea of locally weighted regression is to search
a small set of state-action samples that are similar to the
current query state and estimate a linear regression model
from the neighboring samples to determine an appropriate
output action for the query state. The neighborhood search
is the most computation-demanding component of locally
weighted learning. In order to locate k-nearest neighbors ef-
ficiently, we store training data in a kd-tree and search k-
nearest neighbors approximately within a small error bound
using ANN library [MA06].

The neighboring samples thus obtained may represent a non-
Markovian behavior that can produce more than one out-
put possibility. In order to identify multiple output possibil-
ities, we use k-means clustering algorithm, which sorts the
neighboring samples into clusters at run time (see Figure 3
right). Each cluster includes samples with similar output ac-
tions. The number of clusters to be sorted out depends on
the diversity of behaviors displayed in the video. The proba-
bility of selecting a cluster is inversely proportional to the
mean deviations from the cluster selected at the previous
time step. More specifically, the probability pi of selecting
the i-th cluster of mean mi is

pi =
1/‖mi −mprev‖

∑K
j=1 1/‖m j −mprev‖

(2)

where mprev is the mean vector of the previously selected
cluster and K is the number of clusters.

5.2. Locally Weighted Linear Regression

Given samples {(si,ai)}k
i=1 where si is a vector-valued input

state and ai = (xi,yi) is a two-dimensional output, we first
consider a regression model that produces the x-coordinates
of output vectors. A regression model for y-coordinates can
be built similarly. A linear fitting model can be described as
a matrix equation Sβ= x, where S is a matrix whose i-th row
is sTi , x is a vector whose i-th element is xi, and β is a vector
of the model parameters. Locally weighted linear regression
estimates the model parameters

β = (STWS)−1STWx, (3)

where W is a diagonal weight matrix with Wii = exp
(−

1
2σ (s− si)T (s− si)

)
. This regression weighs near samples

more than farther samples. Bandwidth σ determines how
weights fall off with distance from s.

5.3. Attraction

The strategy of reacting similarly at similar situations may
fail if the situation encountered by an agent is significantly
different from any state-action samples in the training data.
In that case, the nearest samples are not really similar and
a linear regression model would produce extremely extrap-
olated outputs. To avoid excessive extrapolations, we make

Figure 4: Various interaction patterns in group behavior.
(Top) We captured our subjects chatting in small groups and
waiting in line. (Bottom) The learned action models pro-
duced the extended formations of corresponding styles.

a small perturbation to the output of locally weighted linear
regression. The range of perturbation is limited by a constant
multiple of standard deviations from the mean direction and
distance (see Figure 3). Within the range, a perturbation is
decided in such a way that the moving direction is steered
toward the nearest sample configuration. To do so, we reg-
ularly sample output possibilities in the perturbation region
and select the one that minimizes the distance to the nearest
sample in the training data. Attraction to the nearest sample
keeps the local formation of agents not to drift away from
sample formations observed from the video.

6. Crowd Simulation

6.1. High-Level Behavior

To make our agents not only react immediately with respect
to perceived situations but also decide their high-level be-
haviors actively, we provide them with a high-level decision
model composed of a set of learned low-level action models.
In our system, this scheme is implemented as a finite state
machine, in which each action model corresponds to a state.
To reproduce global behavior patterns observed in training
video, we encode the transition conditions between action
models and control parameters such as the average duration
of staying in each action model. These control parameters
are measured from crowd video.

A typical example of high-level behavior is observed in a
form of repeated transition between locomotion and group
interaction. An agent moves around, joins a small group of
agents for interaction, and leaves the group, repeatedly (see
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idle

repositioning feet turn

chat

cheer

a set of parameterized 
walking motions

Figure 5: A transition graph for full-body motion synthesis.

Figure 4). These groups can be formed and disappeared dy-
namically. From the video, we measure the average size of
agent groups, the average duration of staying, and the aver-
age interpersonal distance in groups. A new group is formed
when more than two agents meet within the average inter-
personal distance. If an agent approaches a group within its
average interpersonal distance, the agent may be accepted
to join the group probabilistically not to make the group too
large beyond the average group size. Some action models en-
force spatial constraints for transitioning. For example, the
group of agents forms a line in front of a ticket booth. This
group allows new members to join only at the end of the line
and only the member at the front of the line can leave the
group.

In order to simulate crowds in complex virtual environments,
each agent need to adapt to their surroundings such as nar-
row gates, corridors and crosswalks. Our system allows the
user to create the layout of an environment and annotate the
environment what behavior models are appropriate in which
part of the environment. Each agent in the crowd chooses its
behavior model according to the annotation.

6.2. Full-body Motion Synthesis

For visually appealing and realistic crowd behaviors, we
synthesize the full-body motion of human-like characters
along the two-dimensional point trajectories of simulated
agents. Since detailed full-body motions are not captured
from the video, the context of motions along the trajectories
are partly inferred from the trajectories and partly obtained
from manual annotations.

We employ data-driven motion synthesis methods that uti-
lize motion capture data. Two groups of motion data, lo-
comotion and in-place motion, were collected to synthesize
full-body animation of individual agents. In order to build lo-
comotion library, our motion capture subject walked in var-
ious speeds and turning angles. The in-place motion library
includes chatting, standing idly, cheering, turning, and repo-
sitioning feet.

The locomotion of a full-body character is parameterized by
speeds and turning angles, and can be synthesized to walk
along a two-dimensional trajectory. For parameterizing and
blending example motions, we use an on-line motion blend-
ing method suggested by Park et al. [PSKS04]. This tech-
nique allows us to blend motion segments precisely at the
granularity of frames. The in-place motions and the parame-
terized walking motions are integrated into a transition graph
so that transitions between them can be made immediately
(see Figure 5).

Synthesizing full-body motions along a given trajectory re-
quires a lookahead search to determine which connecting
transition to choose among many transition possibilities.
When the computational cost is a major concern, a short pe-
riod of lookahead time (0.66 seconds in our experiments) is
used to decide transitions and the root node (the pelvis) of
each articulated character is simply made to follow its tar-
get trajectory while allowing its feet to slide on the ground.
In order to maximize the animation quality, each character
searches a longer period of time to make a better decision of
transitioning and prevents feet from sliding by using hierar-
chical displacement mapping [LS99].

7. Experimental Results

We recorded a variety of group behavior scenarios of about
an hour in a rectangular region of 10m x 10m (see Table 1).
In the videos, about forty volunteers walked in a variety of
environment setups including corridors, corners and cross-
roads (Locomotion), passed through narrow gates (Passing
gates), stopped and watched a street performance (Stage),
waited in line (Line), chatted in small groups (Chat), and
walked in various styles (Commuter, Stroller, Tourist). For
each video, we tracked individual trajectories and annotated
walls and pivots (such as the gate and the stage) if neces-
sary. It took about thirty minutes to postprocess two hun-
dred frames. In each individual frame, about twenty people
are traced. The coordinate system was decided appropriately
depending on the presence of pivots and the type of behav-
iors. For each query at runtime, we found one hundred of
the nearest samples from training data and sorted them into
three groups. The bandwidth of the kernel used in locally
weighted linear regression was adaptively adjusted to the
distance to the fifth nearest sample.

Styles. We acquired a collection of videos that recorded hu-
man crowds exhibiting different behavioral patterns, includ-
ing the styles of busy commuters, relaxed strollers, and wan-
dering tourists. Our behavior model captured these stylis-
tic variations and reproduced them successfully in simulated
crowds (see Figure 6).

Simulated crowds. To access the performance, we used our
data-driven method to imitate Reynolds’ rule-based algo-
rithms. We collected a set of 4617 state-action samples from
a simulated crowd controlled by Reynolds’ leader-follower
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Figure 6: The snapshots of crowd simulation reveal sub-
tleties in group behaviors. (Top left) Various collision avoid-
ance strategies are implicitly encoded in our data-driven be-
havior model and reproduced in the simulation. (Top right)
Three characters meet at the gate. A similar situation ob-
served in the video is reproduced so that the character at
the middle gives way to the other two and waited until they
pass through the gate. (Bottom) The stylistic variations in
group behavior are reproduced in the simulated crowds. The
agents in the left figure tend to keep pace with nearby agents
whereas the agents in the right try to pass the others at vari-
able speed.

Figure 7: The locomotion and interaction behavior models
are learned from the ants video on the left and these behavior
models are used to simulate virtual human crowds on the
right. The ants video used courtesy of BioTracking project at
Georgia Institute of Technology.

model. Our behavior model learned from simulated train-
ing data similarly reproduced the characteristics of the rule-
based behavior.

Ants. The group behaviors of animals and insects can also
be applied to humans, thus creating a virtual human crowd
that exhibit their behaviors. In the ants video, twenty ants
are roaming around, approaching other ants, and interacting

with each other by antennal contact. We learned an agent
model from the ants video and applied this model to sim-
ulate a virtual human crowd (see Figure 7). To do so, we
classified observed ant states into either locomotion or in-
teraction automatically using simple rules; A group of ants
staying within a threshold distance for more than one second
are considered to be interacting with each other. All the other
behaviors are classified as locomotion. The size and the ve-
locity of ant trajectories were scaled appropriately in order
to compensate for the scale difference between humans and
ants.

Evacuation. Our approach is useful in simulating an evacu-
ation scenario, in which a realistic group behavior plays an
important role. In Figure 8, 80 agents are initially scattered
in the five rooms, which are connected to the corridors lead-
ing to the building exit. Appropriate behavior models were
annotated on the environment layout in such a way that the
agents can leave the room and rush to the exit for evacua-
tion. Similar to real emergency situations, bottlenecks were
formed at narrow gates and junctions in simulation.

Small town performance. We built a small virtual town
populated by 300 residents (see Figure 9). In a public square
in the town, break dancers show their performance. The res-
ident people are wandering around on the streets, chatting,
gathering to watch the performance, and cheering. Generat-
ing 1000 frames of crowd simulation took about 5 minutes
with 3D rendering disabled.

8. Discussion

The primary advantage of our approach is its capability of re-
producing realistic human group behaviors in simulated en-
vironments. In our experiments, we observed the complexity
and subtle details of simulated behavioral patterns that can-
not easily be accomplished by using rule-based agent mod-
els. Our approach is especially useful for applications that
need to simulate a large repertoire of realistic interactions
among human characters.

The memory and computation costs of our regression-based
learning algorithm increase with the amount of training data.
The memory cost is not generally a problem, because it in-
creases linearly with the size of training data. The computa-
tion cost is more serious, because the controller performs a
neighborhood search for regression at run time. The compu-
tational cost was mitigated by maintaining data in kd-trees,
which facilitate efficient spatial query processing.

We have visually compared the original videos and simu-
lated crowds to see if human group behaviors are success-
fully captured and reproduced in the simulated environment.
Though this visual comparison is an effective way of evalu-
ating the quality and similarity of group behaviors in a sub-
jective point of view, we also need a quantitative method
of evaluating and characterizing group behaviors. The sta-
tistical measures, such as the average interpersonal space,
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Figure 8: Evacuation

Figure 9: Break dancer performance in the small town. The bottom right image is the layout of the town annotated by embedded
behavior models. The characters in the blue region is directed to move to the gates and the characters in the pink region is
provided with the “Passing gate” behavior model. The green, light green, purple annotations correspond to “chat”, “ants”,
and “stage” behavior models, respectively. Building geometry models used courtesy of Pascal Mueller and Simon Haegler,
copyright ETH Zurich.
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Behavior # of video # of (s,a) Coordinate Neighborhood Feature weights
Models frames samples system radius Speed Formation Pivot Direction

Locomotion 3000 2204 local 1.5 to 2 (m) 1 100 0 1
Passing gate 400 1216 pivot 1 (m) 1 100 10 0

Chat 1200 1041 pivot 1 (m) 1 100 0 0
Line 1200 927 pivot 1 (m) 1 10 10 0
Stage 600 640 pivot 1 (m) 1 100 1 0
Ants 3277 (interaction) 936 pivot 3 (cm) 1 100 0 0

(locomotion) 1244 local 3 (cm) 1 10 0 100
Reynolds 10000 4617 local 2 (m) 1 1 500 0
Commuter 700 963 local 1 (m) 1 1 0 1
Stroller 700 1277 local 1 (m) 100 1 0 100
Tourist 1500 1226 local 1 (m) 1 50 0 1

Table 1: Experimental data. The videos are sampled at the rate of 10 frames per second. The state of each individual is
represented with respect to either a local, moving coordinate system or a fixed coordinate system. The radius of a perceived
neighborhood was determined based on the density of the crowd. The feature weights for self speed, neighborhood formation,
pivot, and intended moving direction are provided.

the density and uniformity of distribution, the regularity of
formation, and the temporal and spatial coherence of group
interactions, might be used to quantify the characteristics of
group behaviors.

The flexibility of crowd simulation could be increased by pa-
rameterizing group behaviors learned from video. A promis-
ing scenario is to install multiple camcorders at fixed loca-
tions for an extended period of time and collect video clips
that record crowd behaviors at a variety of time, seasons,
weather conditions, and spatial locations. These collection
would allow us to build a parameterized behavior model that
can be adapt for environment factors.
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